next up previous
Next: Dirichlet boundary conditions Up: Discretization and optimization techniques Previous: Discretization and optimization techniques

Neumann boundary conditions

The optimization variable $\,z\,$ in (4.1) is taken as the vector

\begin{displaymath}
z:=(\,(y_{ij})_{\,(i,j) \in I(\bar{\Omega})}\,,
\,(u_{ij})_{\,(i,j) \in I(\Gamma)}\,) \,\in I\!\! R^{\,N^2+4N+4N} \,.
\end{displaymath}

Equality constraints are obtained by applying the five-point-star to the elliptic equation $\, - \Delta y(x) + d(x,y(x)) = 0 \,$ in (2.2) in all points $\,x_{ij}\,$ with $\,(i,j) \in I(\Omega)$:
\begin{displaymath}
\hspace*{-5mm}
G^h_{ij}(z):= 4y_{ij} - y_{i+1,j} - y_{i-1,j} - y_{i,j+1} - y_{i,j-1}
+ h^2\,d(x_{ij},y_{ij}) = 0 \,.
\end{displaymath} (4.3)

The derivative $\,\partial_{\nu} y(x_{ij}) \,$ in the direction of the outward normal is approximated by the expression $\, y^{\,\nu}_{ij}/h\,$ where
\begin{displaymath}
y^{\,\nu}_{ij} := \;
\left \{
\begin{array}{llll}
\ y_{i0} ...
..., & \mbox{for} & j=N+1, & i=1,...,N
\end{array}\right \} \, .
\end{displaymath} (4.4)

Then the discrete form of the Neumann boundary condition in (2.2) leads to the equality constraints
\begin{displaymath}
B^h(z):=
y^{\nu}_{ij} - h\,b(x_{ij},y_{ij},u_{ij}) = 0\quad \mbox{for} \quad
(i,j) \in I(\Gamma)\, . \quad
\end{displaymath} (4.5)

The control and state inequality constraints (2.3) and (2.4) yield the inequality constraints
    $\displaystyle S(x_{ij},y_{ij}) \leq 0 \,, \hspace*{12mm} (i,j) \in I(\bar{\Omega})\,,$ (4.6)
    $\displaystyle C(x_{ij},y_{ij},u_{ij}) \leq 0 \,, \quad (i,j) \in I(\Gamma)\,.$ (4.7)

Observe that these inequality constraints do not depend on the meshsize $\,h\,$. Later on, this fact will require a scaling of the Lagrange multipliers. The discretized form of the cost function (2.1) is
\begin{displaymath}
F^h(z):= h^2 \sum_{(i,j)\in I(\Omega)} f(x_{ij},y_{ij}) \,+\,
h \sum_{(i,j) \in I(\Gamma)} g(x_{ij},y_{ij},u_{ij}) \,.
\end{displaymath} (4.8)

Then the relations (4.3)-(4.8) define an NLP-problem of the form (4.1). The Lagrangian function for this NLP-problem becomes
$\displaystyle \hspace*{-10mm}
L(z,q,\mu,\lambda):=$   $\displaystyle \hspace*{-4mm}
h^2 \sum_{(i,j)\in I(\Omega)} f(x_{ij},y_{ij}) \,+\,
h \sum_{(i,j) \in I(\Gamma)} g(x_{ij},y_{ij},u_{ij})$ (4.9)
    $\displaystyle \hspace*{-6mm}
+\,\sum_{(i,j)\in I(\Omega)} \,q_{ij} G^h_{ij}(z) +
\,\sum_{(i,j)\in I(\bar{\Omega})}\,\mu_{ij} S(x_{ij},y_{ij})\,$  
    $\displaystyle \hspace*{-6mm}
+\, \sum_{(i,j)\in I(\Gamma)} [\,q_{ij} B^h(z) +
\lambda_{ij} C(x_{ij},y_{ij},u_{ij})\,] \,.$  

The Lagrange multipliers $\,q=(q_{ij})_{(i,j) \in I(\bar{\Omega})}\,$, $\,\mu=(\mu_{ij})_{(i,j) \in I(\bar{\Omega)}}\,$ resp.
$\,\lambda=(\lambda_{ij})_{(i,j) \in I(\Gamma)}\,$ are associated with the equality constraints (4.3) and (4.5), the inequality constraints (4.6), resp. the inequality constraints (4.7). The multipliers $\,\lambda\,$ and $\,\mu\,$ satisfy complementarity conditions corresponding to (2.10):

\begin{eqnarray*}
\begin{array}{llll}
\lambda_{ij} \geq 0 & \mbox{and} & \; \lam...
...
& \mbox{for all} \quad (i,j) \in I(\bar{\Omega}) \,.
\end{array}\end{eqnarray*}




The discussion of the necessary conditions of optimality

\begin{displaymath}
\,0 = L_z = (\,(L_{y_{ij}})_{(i,j)\in I(\bar{\Omega}) }\,,
(L_{u_{ij}})_{(i,j)\in I(\Gamma)}\,)
\end{displaymath}

will be performed for different combinations of indices $\,(i,j)\,$. For indices $\, (i,j) \in I(\Omega)\,$ we obtain the relations

\begin{eqnarray*}
0 = L_{y_{ij}} = && \hspace*{-4mm}
4q_{ij} - q_{i+1,j} - q_{i-...
...+ h^2 \,f_y(x_{ij},y_{ij})\,+\,
\mu_{ij}S_y(x_{ij},y_{ij})
\,.
\end{eqnarray*}



Hence, the Lagrange multipliers $\,q=(q_{ij})\,$ satisfy the five-point-star difference equations for the adjoint equation $\, -\Delta \bar{q} + \bar{q}\,d_y + f_y + \,S_y\,\bar{\mu} = 0\,$ in (2.7) if we make the following identification for the Borel measure $\,\bar{\mu}\,$. Let $\,sq(h^2)\,$ denote a square centered at $\,x_{ij}\,$ with area $h^2$. Then we have the approximation
\begin{displaymath}
\hspace*{20mm}
\int_{sq(h^2)} \, d\bar{\mu} \; \sim \; \mu_{ij} \,.
\end{displaymath} (4.10)

Recall the decomposition (2.11) of the measure $\,\bar{\mu} = \bar{\nu} \cdot dx\,+\,\bar{\nu}_s \cdot \bar{\mu}_s\,$. If the singular part of the measure vanishes, i.e. $ \,\bar{\nu}_s \cdot \bar{\mu}_s=0, $ then (4.10) yields the approximation for the density $\,\bar{\nu}$:
\begin{displaymath}
\hspace*{20mm}
\bar{\nu}(x_{ij})\, \sim\ \mu_{ij}/h^2 \,.
\end{displaymath} (4.11)

In case that the measure $\, \bar{\mu} = \bar{\nu}_s \cdot \delta(x-x_{ij})\,$ is a delta distribution, we obtain from (4.10) the relation
\begin{displaymath}
\hspace*{20mm}
\bar{\nu}_s \, \sim\ \mu_{ij}
\,.
\end{displaymath} (4.12)

For indices $\,(i,j) \in I(\Gamma)\,$ on the boundary we get, e.g. for $\,j=0,\,i=1,...,N\,$:

\begin{eqnarray*}
0= L_{y_{i0}} = && \hspace*{-6mm}
-q_{i1} + q_{i0} -q_{i0}hb_y...
...0}\,C_y(x_{i0},y_{i0},u_{i0}) + \mu_{i0}\,S_y(x_{i0},y_{i0}) \,.
\end{eqnarray*}



This is just the discrete version of the Neumann boundary condition (2.8) if we identify
\begin{displaymath}
\hspace*{10mm}
h\,\bar{\lambda}(x_{i0})\,\sim\,\lambda_{i0} , \quad
\int_{s(h)} d\bar{\mu} \sim \,\mu_{i0} \,,
\end{displaymath} (4.13)

where $\,s(h)\,$ is a line segment on $\,\Gamma\,$ of length $h$ centered at $\,x_{i0}\,$. For the special decomposition $\,\bar{\mu} =\bar{\nu}\cdot dx\,$ this leads to the identifications
\begin{displaymath}
\hspace*{10mm}
\bar{\lambda}(x_{i0}) \, \sim \lambda_{i0} / h \,, \quad
\bar{\nu}(x_{i0}) \sim \,\mu_{i0}/h \,.
\end{displaymath} (4.14)

Similar relations hold for other indices $\,(i,j) \in I(\Gamma)\,$. Finally, necessary conditions with respect to the control variables $\,u_{ij}, (i,j)\in I(\Gamma)\,$ are determined, e.g., for indices $j=0,\,i=1,...,N\,,$ by

\begin{displaymath}
0= L_{u_{i0}} = h g_u(x_{i0},y_{i0},u_{i0}) -
q_{i0}\,h b_u...
...,y_{i0},u_{i0}) +
\lambda_{i0}\,C_u(x_{i0},y_{i0},u_{i0}) \,.
\end{displaymath}

This is the discrete version of the optimality condition (2.9) for the control, if we use again the identification $\,h\,\bar{\lambda}(x_{i0}) \,\sim\, \lambda_{i0} \,$.


next up previous
Next: Dirichlet boundary conditions Up: Discretization and optimization techniques Previous: Discretization and optimization techniques
Hans D. Mittelmann
2002-11-25