next up previous
Next: Equilibrium of system of Up: Application Problems Previous: Portfolio optimization

FIR Filter Design

Let $ h_0,\cdots,h_{n-1}\in{\bf R}$ be the coefficients of a finite impulse response (FIR) filter of length $ n$. The filter output signal $ y$ is defined by the input signal $ u$, by

$\displaystyle y(k)=\sum^{n-1}_{j=0} h_ju(k-j).$

The function of the frequency response is $ H:[0,2\pi]\rightarrow{\bf C}$ defined by

$\displaystyle H(\omega)=\sum^{n-1}_{k=0}h_ke^{-ik\omega }, $

where $ i=\sqrt{-1}$ and $ \omega$ is the frequency parameter. There are several different FIR filter designs, see, for example [5].

In this section, we consider the minimax dB linear phase lowpass FIR filter design,

\begin{displaymath}
\begin{array}{rll}
\mbox{min}&t&\\
\mbox{s.t.}&\frac{1}{t}...
...eq\beta,&\omega_s\leq\omega\leq\pi,\\
&t\geq 1,&
\end{array} \end{displaymath}

where $ \beta\geq 0$ and $ 0<\omega_p<\omega_s<\pi.$ For simplicity we assume $ n$ is even.

Note that this problem has infinite constraints. Subsequently, we discretize the frequency parameter $ \omega$ to obtain a finite-constraint approximation. Moreover, there is a nonlinear term $ \frac{1}{t}$ in the first part of the constraints. To convert it to a second order cone constraint, we introduce $ u$ such that

$\displaystyle \frac{1}{t}\leq u.$

We take the following approach,

$\displaystyle 1\leq ut \Longleftrightarrow v^2\leq 2ut,$   for $\displaystyle u\geq 0,
t\geq1,$   and $\displaystyle v=\sqrt{2}.$

Now, we obtain the problem in SOCP form,

\begin{displaymath}\begin{array}{rll} \mbox{min}&t&\\  \mbox{s.t.}&u\leq2\sum^{n...
...  &t\geq 1, v=\sqrt{2},&\\  &v^2\leq 2ut, u\geq 0,& \end{array}\end{displaymath} (3-9)

where $ 0=\omega_0<\cdots<\omega_{N_1-1}=\omega_p$, $ \omega_s=\omega_{N_1}<\cdots <\omega_N=\omega.$ We use the following data in our test cases.

Example 5. Given $ \beta=0.01$, $ \omega_p=\pi/2$, and $ \omega_s=2\pi /3.$ We descretize the frequency parameter $ \omega$ by the uniform step $ \frac{\pi}{180}.$ We choose $ n=10,20,40,80$ as our test samples.

More details about this problem and the interior point approach can be found in [19].


next up previous
Next: Equilibrium of system of Up: Application Problems Previous: Portfolio optimization
Hans D. Mittelmann 2003-09-10