next up previous
Next: About this document ... Up: Interior Point Methods for Previous: Conclusion


E.D. Andersen, C. Roos, and T. Terlaky,`` On implementing a primal-dual interior-point method for conic quadratic optimization.'' Mathematical Programming Ser. B, 95 (2003), pp. 249-277.

K. M. Bretthauer and B. Shetty, `` The nonlinear resource allocation problem,'' Operations Research, 43 (1995), pp. 670-683.

R. W. Freund, F. Jarre, and S. Mizuno, `` Convergence of a class of inexact-interior-point algorithm for linear programs,'' Mathematics of Operation Research, 24 (1999), pp. 50-71.

Y. J. Kuo, `` Interior point algorithm for second-order cone problems with applications,'' PhD dissertation, Department of Mathematics and Statistic, Arizona State University, 2002.

M.S. Lobo, L. Vandenberghe, and S. Boyd, `` Application of second-order cone programming,'' Linear Algebra Application, 284 (1998), pp. 193-228.

S. Mehrotra, `` On the implementation of a primal-dual interior point method,'' SIAM Journal on Optimization, 2 (1992), pp. 575-601.

H. D. Mittelmann, ``An Independent Benchmarking of SDP and SOCP Solvers,'' Mathematical Programming Ser. B, 95 (2003), pp. 407-430.

S. Mizuno and F. Jarre, `` Global and polynomial-time convergence of an infeasible-interior-point algorithm using inexact computation,'' Mathematical Programming, 84 (1999), pp. 357-373.

R. D. C. Monteiro and T. Tsuchiya, `` Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions,'' Mathematical Programming, 72 (2000), pp. 61-83.

Y. Nesterov and M. Todd, `` Self-scaled barries and interior point mehtods for convex programming,'' Mathematics of Operation Research, 22 (1997), pp. 1-42.

F. Potra and R. Q. Sheng, ``Homogeneous interior-point algorithms for semidefinite orogramming,'' Optimization Methods and Software, 9 (1998), pp. 161-184.

Jos F. Sturm, ``Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,'' Optimization Methods and Software, 11/12 (1999), pp. 625-653.

T. Tsuchiya, `` A convergence Analysis of the Scaling-invariant Primal-dual Path-following Algorithms for Second-order Cone Programming,'' Optimization Methods and Software, 11/12 (1999), pp. 141-182.

R.H. Tütüncü, K.C. Toh, and M.J. Todd, ``Solving semidefinite-quadratic-linear programs using SDPT3,'' Mathematical Programming Ser. B, 95 (2003), pp. 189-217.

R.J. Vanderbei and H. Yurttan, `` Using LOQO to solve second-order cone programming problems,'' Report SOR 98-09, Princeton University, 1998.

R.J. Vanderbei and H. Yurttan, rvdb/ampl/nlmodels/index.html

J. A. Ventura and C. M. Klein, `` A note on multi-item inventory systems with limited capacity,'' Operation Research Letters, 7 (1988), pp. 71-75.

S.J. Wright, Primal-dual interior-point methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

S.-P. Wu, S. Boyd and L. Vandenberghe, `` FIR filter design via spectral factorization and convex optimization.'' Applied and Computational Control, Signals, and Circuits, Biswa Datta editor, Birkhauser, Chapter 5, 1 (1998), pp. 215-245.

H. Ziegler, `` Solving certain singly constrained convex optimization problems in production planning,'' Operation Research Letters, 1 (1982), pp. 246-252.

Yu-Ju Kuo
Mathematics Department
Indiana University of Pennsylvania
Indiana, PA 15705

Hans D. Mittelmann
Department of Mathematics & Statistics
Arizona State University
Tempe, AZ, 85287-1804

Hans D. Mittelmann 2003-09-10