next up previous
Next: Application Problems Up: Interior Point Methods for Previous: Introduction and Definitions

Existence of step length for long-step method

In this section, we prove the existence of the step length $ \alpha$ using the method described in [18]. See also [11] for an analysis of the semidefinite case. Here is the algorithm which we analyze in this section.

Algorithm 2.1   Given $ \gamma$, $ \sigma$, $ (x^{(0)},\tau^{(0)}),(s^{(0)},\kappa^{(0)})\in
int(\bar{K}),$
for $ N=1, 2, \cdots$
Set $ \phi=\phi^{(N-1)},$
Solve (1-6) for $ \triangle \phi$
Find the largest $ \alpha\in [0,1]$, such that $ \phi^{(N-1)}+\alpha\triangle\phi\in N(\gamma),$
Update $ \phi^{(N)},$
end.

Denote the maximal and minimal eigenvalues of $ X^i$ by $ \lambda_{\mbox{max}}(x^i)$ and $ \lambda_{\mbox{min}}(x^i)$, respectively. From [9], we have that

$\displaystyle \lambda_{\mbox{max}}(x^i)=x^i_1+\Vert x^i_{2:n_i}\Vert,\mbox{ and }
\lambda_{\mbox{min}}(x^i)=x^i_1-\Vert x^i_{2:n_i}\Vert.$

Since $ X$ is the diagonal matrix consisting of $ X^1,\cdots,X^k$, it follows that $ \lambda_{\mbox{max}}(x)$ and $ \lambda_{\mbox{min}}(x)$ are obtained from

$\displaystyle \lambda_{\mbox{max}}(x)=max\{x^i_1+\Vert x^i_{2:n_i}\Vert,i=1:k\},
\mbox{and }$

$\displaystyle \lambda_{\mbox{min}}(x)=min\{x^i_1-\Vert x^i_{2:n_i}\Vert,i=1:k\}.$

We now start to find upper bounds for vectors. We consider Algorithm 2.1, but we use (1-6) with the NT direction instead of (1-5).

First, we introduce a useful quantity $ \nu_N$ defined by

$\displaystyle \nu_N=\prod^{N-1}_{j=0}(1-\alpha_j(1-\sigma_j)),$ (2-1)

where $ \alpha_j$ is the step length and $ \sigma_j$ is the centering parameter in the $ j$-th iteration. According to Lemma 3.13 in [4] and the definitions of $ r_1, r_2,r_3$ in Algorithm 2.1, we have

\begin{displaymath}\begin{array}{rcl}
r^{(N)}_i&=&\nu_Nr^{(0)}_i,\mbox{ }i=1,2,3\\
\mu_N&=&\nu_N\mu_0.
\end{array}\end{displaymath}

We choose the initial point by the following:

\begin{displaymath}\begin{array}{rl} \mbox{if }x^i,s^i\in K^q,&x^i=\delta e^{n_i...
... x^i=\delta =s^i,\mbox{ and } \tau =\delta =\kappa, \end{array}\end{displaymath} (2-2)

where $ \Vert(x^\ast,\tau^\ast,s^\ast,\kappa^\ast)\Vert _\infty\leq\delta.$ The following lemma gives the bound on

$\displaystyle \nu\Vert(x^{(N)},\tau^{(N)},s^{(N)},k^{(N)})\Vert _\infty.$

Lemma 2.2   Let the initial point be given by (2-2). For all $ N\geq
0$, there exists $ C_1>0$, such that

$\displaystyle \nu\Vert(x^{(N)},\tau^{(N)},s^{(N)},k^{(N)})\Vert _\infty\leq
C_1\mu_N.$

Proof. For simplicity, we ignore the iteration index $ (N)$ on the vectors. Let $ (x^\ast,\tau^\ast,y^\ast,s^\ast,\kappa^\ast)$ be any primal-dual solution and define

$\displaystyle \hat{\phi}=\nu_N\phi^{(0)}
+(1-\nu_N)\phi^\ast-\phi.$

It is easy to verify that $ \hat{\phi}$ satisfies the following three equations:

\begin{displaymath}\begin{array}{rcl} A\hat{x}-b\hat{\tau}&=&0,\\  A^T\hat{y}+\h...
...u}&=&0,\\  -c^T\hat{x}+b^T\hat{y}-\hat{\kappa}&=&0. \end{array}\end{displaymath} (2-3)

Hence,

\begin{displaymath}\begin{array}{rcl} \hat{x}^T\hat{s}+\hat{\tau}\hat{\kappa}&=&...
...at{y})+ \hat{\tau}(-c^T\hat{x}+b^T\hat{y})\\  &=&0. \end{array}\end{displaymath} (2-4)

From (2-4), we have

\begin{displaymath}\begin{array}{rcl} 0&=&\hat{x}^T\hat{s}+\hat{\tau}\hat{\kappa...
...st)\\  &+&(1-\nu_N)^2\chi^{{\ast}^T}\varsigma^\ast. \end{array}\end{displaymath} (2-5)

Since $ \bar{K}$ is self-dual and $ (x^\ast,\tau^\ast,y^\ast,s^\ast,\kappa^\ast)$ is a solution, we have that

\begin{displaymath}\begin{array}{rclc}
\chi^T\varsigma^\ast+\varsigma^T\chi^\ast\geq 0, \mbox{ and }
\chi^{\ast T}\varsigma^\ast=0.
\end{array}\end{displaymath}

After inserting the above equations into (2-5), we obtain the following inequality,

\begin{displaymath}
\begin{array}{rcl}
\nu_N(\chi^{{(0)}^T}\varsigma+\varsigma^{...
...0)}^T}\varsigma^\ast+\varsigma^{{(0)}^T}\chi^\ast).
\end{array}\end{displaymath}

Next, we define the constant $ \xi$ by

$\displaystyle \xi=$min$\displaystyle \{$min$\displaystyle _{x^i\in
K^q}\{x^{i(0)}_1,s^{i(0)}_1\},\mbox{min}_{x^i\in
K^r}\{x...
...},
\mbox{min}_{x^i\in{\bf R}_+}\{x^{i(0)},s^{i(0)}\},\tau^{(0)},\kappa^{(0)}\},$

where $ x^{i(0)}_{1:2}$ are the first two entries of $ x^i{^{(0)}}.$ By (2-2), we have that $ \xi =\delta.$ One can also derive the following inequality based on the definition of the initial point,

\begin{displaymath}\begin{array}{rcl}
\xi\Vert(\chi,\varsigma)\Vert _\infty&\leq...
...eq&\varsigma^{{(0)}^T}\chi+\chi^{{(0)}^T}\varsigma.
\end{array}\end{displaymath}

Therefore,

\begin{displaymath}\begin{array}{rcl}
\xi\nu_N\Vert(\chi,\varsigma)\Vert _\infty...
...\Vert(\chi^\ast,\varsigma^\ast)\Vert _1\mu_N/\mu_0.
\end{array}\end{displaymath}

Since $ \mu_0=\delta^2$,

$\displaystyle C_1=(2(k+1)+\Vert(x^\ast,\tau^\ast,s^\ast,\kappa^\ast)\Vert _1/\delta)/\delta.$

Furthermore, because $ \Vert(x^\ast,\tau^\ast,s^\ast,\kappa^\ast)\Vert _1\leq 2(n+1)\delta,$ it follows that

$\displaystyle C_1=2(k+n+2)/\delta.$

Since we specifically discuss the system (1-6) with the NT search direction, we define the following notation for the scaled vectors at the $ N$-th iteration:

$\displaystyle D_1=(\Theta W)^{-1},$     $\displaystyle D_2=(\kappa^{1/2}\tau^{-1/2})^{-1},$ and $\displaystyle D=\begin{pmatrix}D_1&\cr &D_2\end{pmatrix}.$

The next lemma gives bounds on the scaled vectors $ \triangle\bar{x}=(D_1)^{-1}\triangle x$ and $ \triangle\bar{s}=D_1\triangle s.$

Lemma 2.3   Applying the NT scaling scheme to (1-6), i.e., using $ \bar{x}=\bar{s}$, there is a positive constant $ C_2$, such that

$\displaystyle \left\Vert(D)^{-1}\begin{pmatrix}\triangle x\cr \triangle\tau\end{pmatrix}\right\Vert\leq
C_2\mu_N^{1/2},$  $\displaystyle \left\Vert(D)\begin{pmatrix}\triangle s\cr
\triangle\kappa\end{pmatrix}\right\Vert\leq C_2\mu_N^{1/2},$    for all $\displaystyle N\geq0.$

Proof. Let us define

\begin{displaymath}\begin{array}{rcl}
\hat{\phi}&=&\triangle\phi+\nu_N\phi^{(0)}+\nu_N\phi^\ast.
\end{array}\end{displaymath}

It is easy to verify that $ \hat{\phi}$ satisfies (2-3) and (2-4). In order to obtain the fourth equation in (1-6), we use the following expression

\begin{displaymath}\begin{array}{rcl}
&&\bar{S}T\Theta W\hat{x}+\bar{X}T(\Theta ...
...\ast)+\nu_N\bar{X}T(\Theta W)^{-1}(s^{(0)}-s^\ast).
\end{array}\end{displaymath}

Since we consider the NT direction, i.e., $ \bar{S}=\bar{X}$, we multiply by $ T\bar{S}^{-1}$ from the left and obtain

$\displaystyle D_1^{-1}\hat{x}+D_1\hat{s}=-T\bar{S}^{-1}(\bar{X}\bar{S}e-\sigma_N\mu_ne)
+\nu_ND_1^{-1}(x^{(0)}-x^\ast)+\nu_ND_1(s^{(0)}-s^\ast).$

Similarly,

$\displaystyle D_2^{-1}\hat{\tau}+D_2\hat{\kappa}=-(\kappa\tau)^{-1/2}(\tau\kapp...
...\mu_N)
+\nu_ND_2^{-1}(\tau^{(0)}-\tau^\ast)+\nu_ND_2(\kappa^{(0)}-\kappa^\ast).$

We now consider the 2-norm of the vector,

$\displaystyle \left\Vert D^{-1}\begin{pmatrix}\hat{x}\cr\hat{\tau}\end{pmatrix}...
...ft\Vert\begin{pmatrix}D_1\hat{s}\cr
D_2\hat{\kappa}\end{pmatrix}\right\Vert^2.
$

On the other hand,

\begin{displaymath}\begin{array}{rll}
\left\Vert \begin{pmatrix}D_1^{-1}\hat{x}+...
...(\kappa^{(0)}-\kappa^\ast)\end{pmatrix}\right\Vert.
\end{array}\end{displaymath}

Combining the above two observations, we obtain an upper bound,

\begin{displaymath}\begin{array}{rll}
\left\Vert\begin{pmatrix}D_1^{-1}\triangle...
...2(\kappa^{(0)}-\kappa^\ast)\end{pmatrix}\right\Vert
\end{array}\end{displaymath}

We now need to show that each term in the right hand side of the above inequality is $ O(\mu_N^{1/2}).$ First, we consider $ \Vert(\bar{S}^i)^{-1}\Vert.$ From the property of $ \bar{S}$ and the definition of $ N(\gamma)$, we derive

\begin{displaymath}\begin{array}{rcl}
\left\Vert(\bar{S}^i)^{-1}\right\Vert&=&\l...
...T}Q^is^i}}\\
&\leq& \frac{1}{\sqrt{\gamma\mu_N}}.
\end{array}\end{displaymath}

Hence,

\begin{displaymath}\begin{array}{rcl}
\left\Vert T\bar{S}^{-1}\right\Vert&=&\mbo...
...kappa\tau)^{-1/2}&\leq&\frac{1}{\sqrt{\gamma\mu_N}}.\end{array}\end{displaymath}

Thus,

\begin{displaymath}
\begin{array}{rcl}
\left\Vert\begin{pmatrix}\bar{X}\bar{S}e-...
...a_N\mu_N)^2
+(\tau\kappa)^2\\
&\leq&(k+1)\mu_N^2.
\end{array}\end{displaymath}

For the remaining terms in the inequality, we have

\begin{displaymath}\begin{array}{ll} &\nu_N\left\Vert\begin{pmatrix}D_1^{-1}(x^{...
...^{(0)}-\kappa^\ast\end{pmatrix}\right\Vert\right\}. \end{array}\end{displaymath} (2-6)

Since $ \Vert D^{-1}\Vert=$ max $ \{\Vert\Theta
W\Vert,\kappa^{1/2}\tau^{-1/2}\}$, we find upper bounds for $ \Vert\Theta
W\Vert$ and $ \kappa^{1/2}\tau^{-1/2}.$ So,

\begin{displaymath}\begin{array}{rcl}
\left\Vert\Theta W\right\Vert&\leq&\mbox{m...
... T\bar{S}^{-1}\Vert(\sum\sqrt{n_i})\Vert s\Vert _1,
\end{array}\end{displaymath}

since $ s=\Theta W\bar{s}.$ Thus,

\begin{displaymath}\begin{array}{rcl}
\Vert D^{-1}\Vert&\leq&\sum\sqrt{n_i}\Vert...
...\tau\end{pmatrix}\right\Vert _1/\sqrt{\gamma\mu_N}.
\end{array}\end{displaymath}

Now (2-6) is bounded by

$\displaystyle \frac{2C_1(\sum\sqrt{n_i}+1)(n+1)}{\sqrt{\gamma}}$max$\displaystyle \left\{\left\Vert\begin{pmatrix}x^{(0)}-x^\ast\cr\tau^{(0)}-\tau^...
...}-s^\ast\cr\kappa^{(0)}-\kappa^\ast\end{pmatrix}\right\Vert\right\}\mu_N^{1/2}.$

Hence,

$\displaystyle C_2=\left( k+1+4C_1(\sum\sqrt{n_i}+1)(n+1)\mbox{max}
\left\{\left...
...r\kappa^{(0)}-\kappa^\ast\end{pmatrix}\right\Vert\right\}\right)/\sqrt{\gamma}.$

If the initial point satisfies (2-2), then the next lemma follows immediately.

Lemma 2.4   Under the same conditions as in the previous lemma and if the initial point satisfies the (2-2), then

$\displaystyle \left\Vert D^{-1}\begin{pmatrix}\triangle x\cr\triangle\tau\end{pmatrix}\right\Vert\leq
C_3\mu_N^{1/2},$ and $\displaystyle \left\Vert D\begin{pmatrix}\triangle
s\cr\triangle\kappa\end{pmatrix}\right\Vert\leq
C_3\mu_N^{1/2}.$

Proof. From(2-2), we have that

$\displaystyle -\delta e_1\leq\begin{pmatrix}x^{(0)}-x^\ast\cr \tau^{(0)}-\tau^\ast\end{pmatrix}\leq\delta
e_1,$

where $ e_1=[1,\cdots,1]^T.$ Then, we can derive the following two estimates,

\begin{displaymath}\begin{array}{rcl}
\left\Vert D^{-1}\begin{pmatrix}x^{(0)}-x^...
...\tau\end{pmatrix}\right\Vert _1/\sqrt{\gamma\mu_N}.
\end{array}\end{displaymath}

It is easy to check that

$\displaystyle C_3=4C_1(n+1)^{3/2}(\sum\sqrt{n_i}+1)/\sqrt{\gamma}.$

The next lemma shows the existence of the step length $ \alpha.$

Lemma 2.5   There exists $ \bar\alpha\in [0,1]$ such that $ (\chi(\alpha),\varsigma(\alpha))\in N(\gamma),$ for all $ \alpha\in [0,\bar\alpha],$ where $ (\chi(\alpha),\varsigma(\alpha))\in N(\gamma)$ is defined as $ (\chi^{(N)},\varsigma^{(N)})+\alpha(\triangle \chi ,\triangle
\varsigma).$

Proof. For simplicity, we consider the quadratic cone case only. By Lemma 2.4, we have

$\displaystyle \triangle x^T\triangle s+\triangle\tau\triangle\kappa\leq
\left\V...
...n{pmatrix}\triangle
s\cr\triangle\kappa\end{pmatrix}\right\Vert\leq C_2^2\mu_N.$

From the last two equations of the system (1-6), we obtain

\begin{displaymath}\begin{array}{rcl}
\varsigma^T\triangle \chi+\chi^T\triangle ...
...\kappa+\sigma_N\mu_N\\
&=&(\sigma_N-1)(k+1)\mu_N.
\end{array}\end{displaymath}

In order to consider $ N(\gamma),$ we estimate $ \mu (\alpha)$ by

\begin{displaymath}
\begin{array}{rcl}
\mu (\alpha)&=&\frac{1}{k+1}\{(\chi+\alph...
...\alpha\sigma_N\mu_N+\frac{\alpha^2C^2_2}{k+1}\mu_N.
\end{array}\end{displaymath}

We now consider the conditions of $ N(\gamma)$. We note that

\begin{displaymath}\begin{array}{rcl}
\tau (\alpha)\kappa (\alpha)-\gamma
\mu(\a...
...q\alpha\sigma_N\mu_N(1-\gamma)-2\alpha^2C^2_2\mu_N.
\end{array}\end{displaymath}

If

$\displaystyle \alpha\leq\frac{\sigma_N(1-\gamma)}{2C^2_2}$

holds, then

$\displaystyle \tau (\alpha)\kappa (\alpha)\geq\gamma\mu (\alpha).$

Therefore,

$\displaystyle \bar{\alpha}=$min$\displaystyle \left\{1,\frac{\sigma_N(1-\gamma)}{2C^2_2}\right\}.$ (2-7)

A similar result in [9] is based on feasible initial points, however, the condition (2-7) is good for infeasible initial points.


next up previous
Next: Application Problems Up: Interior Point Methods for Previous: Introduction and Definitions
Hans D. Mittelmann 2003-09-10