The theory of second-order sufficient optimality conditions (SSC) for the optimal control of semilinear elliptic and parabolic equations is a field of active research. Conditions of this type play an important role in the associated numerical analysis. Their verification is a basic and important issue. Although a numerical confirmation of SSC cannot yet give a definite answer whether they really hold in the infinite-dimensional problem, it provides some evidence about their validity. We refer to recent papers by Mittelmann [7,8], who confirmed that second order sufficient conditions can be checked effectively by numerical techniques. Here, we consider the numerical verification of second order sufficient optimality conditions for the following class of nonlinear optimal control problems of parabolic equations with constraints on the control and the state.
(P) Minimize
We shall consider a particular example of (P), where SSC are fulfilled,
although the second order derivative of the Lagrange function
is not positive definite on the whole space. This is possible, since we
consider strongly active control constraints. Therefore, the construction of
this example is more involved than the analysis of a similar one presented by
Arada, Raymond and Tröltzsch in [1], where
was coercive on the whole space. As a natural consequence, the numerical
verification is more difficult.
In fact, the example from [1] was verified numerically in
[7] for coarser and in [8] for finer discretizations
establishing the definiteness of a projected Hessian matrix while even the
full matrix has this property. This gave rise to our search for the example
presented below. The analysis of SSC for semilinear elliptic and parabolic
control problems with pure control constraints is already quite well
elaborated. We refer to the referenes in [5], [10].
The more difficult case of pointwise state-constraints is investigated,
by Casas, Tröltzsch, and Unger [5],
or Raymond and Tröltzsch [10], and in further papers cited
therein. However, the discussion of SSC for state constraints is still rather
incomplete. Problems with finitely many inequality and equality constraints of
functional type are discussed quite completely in a recent paper by Casas and
Tröltzsch [4].