Next: About this document ...
Up: paper90
Previous: Conclusion
-
- 1
-
N. Arada, J.-P. Raymond, and F. Troltzsch,
``On an augmented Lagrangian SQP method for a class of optimal control
problems in Banach spaces'', to appear.
- 2
-
J.F. Bonnans,
``Second-order analysis for control constrained optimal control problems of
semilinear elliptic systems'',
Appl. Math. Optim., vol. 38, pp. 303-325, 1998.
- 3
-
Ch. Buskens and H. Maurer,
``SQP-methods for solving optimal control problems with control and state
constraints; adjoint variables, sensitivity analysis, and real-time
control'', to appear in [22].
- 4
-
E. Casas, F. Troltzsch, and A. Unger,
``Second order sufficient optimality conditions for a nonlinear elliptic
control problem'',
J. Anal. Appl., vol. 15, pp. 687-707, 1996.
- 5
-
E. Casas, F. Troltzsch, and A. Unger,
``Second order sufficient optimality conditions for some state-constrained
control problems of semilinear elliptic equations'',
to appear in SIAM J. Control Optim.
- 6
-
A.L. Dontchev, W.W. Hager, A.B. Poore, and B. Yang,
``Optimality, stability, and convergence in optimal control,'' Appl. Math.
Optim., vol. 31, pp. 297-326, 1995.
- 7
-
R. Fourer, D.M. Gay, and B.W. Kernighan,
``AMPL: A modeling language for mathematical programming'',
Duxbury Press, Brooks/Cole Publishing Company, Pacific Grove, CA, 1993.
- 8
-
H. Goldberg and F. Troltzsch,
``Second order sufficient optimality conditions for a class of nonlinear
parabolic boundary control problems'',
SIAM J. Control Optim., vol. 31, pp. 1007-1025, 1993.
- 9
-
H. Goldberg and F. Troltzsch,
``On a Lagrange-Newton method for a nonlinear parabolic boundary
control problem'',
Optim. Meth. Software, vol. 8, pp. 225-247, 1998.
- 10
-
M. Heinkenschloss,
``SQP interior-point methods for distributed optimal control problems'',
to appear in Encyclopedia of Optimization, P. Pardalos and C. Floudas
(eds.), Kluwer Academic Publishers.
- 11
-
A.D. Ioffe,
``Necessary and sufficient conditions for a local minimum, part 3: Second order
conditions and augmented duality'',
SIAM J. Control Optim., vol. 17, pp. 266-288, 1979.
- 12
-
K. Ito and K. Kunisch,
``Augmented Lagrangian-SQP methods for nonlinear optimal control problems
of tracking type'',
SIAM J. Control Optim., vol. 34, pp. 874-891, 1996.
- 13
-
K. Ito and K. Kunisch,
``The Newton algorithm for a class of weakly singular optimal control
problems'',
to appear in SIAM J. Optim.
- 14
-
K. Malanowski,
``Sufficient optimality conditions for optimal control problems subject to
state constraints'',
SIAM J. Control Optim., vol. 35, pp. 205-227, 1997.
1994.
- 15
-
H. Maurer,
``First and second order sufficient optimality conditions in mathematical programming
and optimal control'',
Math. Programming Study, vol. 14, pp. 163-177, 1981.
- 16
-
H. Maurer and H.D. Mittelmann,
``Optimization techniques for solving elliptic control problems with control
and state constraints. Part I: Boundary control'',
to appear in Comp. Optim. Appl.
- 17
-
H. Maurer and H.D. Mittelmann,
``Optimization techniques for solving elliptic control problems with control
and state constraints. Part II: Distributed control,''
to appear in Comp. Optim. Appl.
- 18
-
H. Maurer and S. Pickenhain,
``Second-order sufficient conditions for control problems with mixed
control-state constraints'',
J. Optim. Theory Appl., vol. 86, pp. 649-667, 1995.
- 19
-
H.D. Mittelmann and H. Maurer,
``Solving elliptic control problems with interior and SQP methods: control
and state constraints'',
to appear in [22].
- 20
-
J.-P. Raymond and F. Troltzsch,
``Second order sufficient optimality conditions for nonlinear parabolic
control problems with state constraints'', to appear.
- 21
-
K. Schittkowski,
``Numerical solution of a time-optimal parabolic boundary-value control
problem'',
J. Optim. Theory Appl., vol. 27, pp. 271-290, 1979.
- 22
-
V.H. Schulz (ed.),
``SQP-based direct discretization methods for practical optimal control
problems,'' to appear as special issue of J. Comp. Appl. Math.
- 23
-
A.R. Shenoy, M. Heinkenschloss, and E.M. Cliff,
``Airfoil design by an all-at-once method'',
Intern. J. Comp. Fluid Dynam., vol. 11, pp. 3-25, 1998.
- 24
-
P. Spellucci,
``Numerische Verfahren der nichtlinearen Optimierung'',
Birkhäuser-Verlag, Basel, 1993.
- 25
-
R.J. Vanderbei and D.F. Shanno,
``An interior-point algorithm for nonconvex nonlinear programming'',
Comp. Optim. Appl., vol. 13, pp. 231-252, 1999.
- 26
-
S. Volkwein,
``Distributed control problems for the Burgers equation'',
to appear in Comp. Optim. Applic.
- 27
-
S. Volkwein,
``Application of augmented Lagrangian-SQP methods to optimal control
problems for the stationary Burgers equation'',
to appear in Comp. Optim. Applic.
- 28
-
V. Zeidan,
``The Riccati equation for optimal control problems with mixed state-control
constraints: Necessity and Sufficiency'', SIAM J. Control Optim., vol. 32, pp. 1297-1321, 1994.
Hans D. Mittelmann
2001-06-17