Next: About this document ...
Up: paper87
Previous: A distributed control example
-
- 1
-
A. Barclay, P.E. Gill, and J. B. Rosen,
SQP methods and their applications to numerical optimal control,
in Variational Calculus, Optimal Control and Applications, W.H.
Schmidt, K. Heier, L. Bittner, and R. Bulirsch(Eds.), vol. 124, Int.
Series Numer. Mathematics, Basel, Birkhäuser, 1998, pp. 207-222.
- 2
-
M. Bergounioux, M. Haddou, M. Hintermüller and K. Kunisch,
A comparison of interior point methods and a Moreau-Yosida based
active set strategy for constrained optimal control problems,
Preprint, 1998.
- 3
-
M. Bergounioux, K. Ito and K. Kunisch,
Primal-dual strategy for constrained optimal control problems,
SIAM J. Control Optim. 35 (1997) 1524-1543.
- 4
-
M. Bergounioux and K. Kunisch,
Augmented Lagrangian techniques for
elliptic state constrained optimal
control problems,
SIAM J. Control Optim. 37 (1999) 1176-1194.
- 5
-
J.T. Betts,
Issues in the direct transcription of optimal control problems to sparse
nonlinear programs,
in: R. Bulirsch and D. Kraft, eds,
Control Applications of Optimization,
Int. Series Numer. Mathematics 115,
(Basel, Birkhäuser, 1994), 3-17.
- 6
-
J.T. Betts and W.P. Huffmann,
The application of sparse nonlinear programming to trajectory optimization,
J. of Guidance, Control and Dynamics 14 (1991) 338-348.
- 7
-
F. Bonnans,
Second order analysis for control constrained optimal control problems
of semilinear elliptic systems,
Applied Mathematics and Optimization 38 (1998) 303-325.
- 8
-
F. Bonnans and E. Casas,
Optimal control of semilinear multistate systems with state constraints,
SIAM J. Control and Optimization 27 (1989) 446-455.
- 9
-
F. Bonnans and E. Casas,
An extension of Pontryagin's principle for state-constrained optimal control
of semilinear elliptic equations and variational inequalities,
SIAM J. Control and Optimization 33 (1995) 274-298.
- 10
-
N. Bourbaki,
Integration, Chapter 9 (Hermann, Paris, 1963).
- 11
-
C. Büskens,
Optimierungsmethoden und Sensitivitätsanalyse für optimale
Steuerprozesse mit Steuer- und Zustandsbeschränkungen,
Dissertation,
(Universität Münster, Institut für Numerische Mathematik,
Münster, Germany, 1998).
- 12
-
A. Cañada, J.L. Gámez and J.A. Montero,
Study of an optimal control problem for diffusive nonlinear elliptic
equations of logistic type,
SIAM J. on Control and Optimization 36, no. 4 (1998) 1171-1189.
- 13
-
E. Casas,
Control of an elliptic problem with pointwise state constraints,
SIAM J. Control and Optimization 24 (1986) 1309-1318.
- 14
-
E. Casas,
Boundary control with pointwise state constraints,
SIAM J. Control and Optimization 31 (1993) 993-1006.
- 15
-
E. Casas, F. Tröltzsch and A. Unger,
Second order sufficient optimality conditions for a nonlinear elliptic
control problem,
J. for Analysis and its Applications 15 (1996) 687-707.
- 16
-
E. Casas, F. Tröltzsch and A. Unger,
Second order sufficient optimality conditions for some state
constrained control problems of semilinear elliptic equations,
Fakultät für Mathematik, Technische Universität Chemnitz,
Preprint 97-19, to appear in SIAM J. Control Optim..
- 17
-
A.R. Conn, N.I.M. Gould, and Ph.L. Toint,
LANCELOT, A Fortran Package For Large-Scale Nonlinear Optimization
(Release A),
Springer Series in Computational Mathematics, vol. 17,
(Springer Verlag, Heidelberg, 1972).
- 18
-
R. Fourer, D. M. Gay, and B. W. Kernighan,
AMPL: A modeling Language for Mathematical Programming,
(Duxbury Press, Brooks-Cole Publishing Company, Pacific Grove, CA, 1993).
- 19
-
P.E. Gill, W. Murray, and M.A. Saunders,
SNOPT: An SQP algorithm for large-scale constrained optimization,
Report SOL 97-3, Department of EESOR, Stanford University (1997).
- 20
-
R. Hettich, A. Kaplan and R. Tischatschke,
Regularized penalty methods for ill-posed optimal control problems with
elliptic equations.
Part I: Distributed control with bounded control set and state constraints,
Control and Cybernetics 26 (1997) 5-27.
- 21
-
R. Hettich, A. Kaplan and R. Tischatschke,
Regularized penalty methods for ill-posed optimal control problems with
elliptic equations.
Part II: Distributed and boundary control with unbounded control sets and
state constraints,
Control and Cybernetics 26 (1997) 29-43.
- 22
-
K. Ito and K. Kunisch,
Augmented Lagrangian-SQP methods for nonlinear optimal control
problems of tracking type,
SIAM J. Optim. 6 (1996) 96-125.
- 23
-
D. Kraft,
On converting optimal control problems into nonlinear programming problems,
in: K. Schittkowski, ed.,
Computational Mathematical Programming,
NATO ASI Series F: Computer and Systems Science 15
(Springer Verlag, Berlin und Heidelberg, 1985) 261-280.
- 24
-
K. Kunisch and S. Volkwein,
Augmented Lagrangian-SQP techniques and their approximations,
Contemporary Mathematics 209 (1997) 147-159.
- 25
-
A. Leung and S. Stojanovic,
Optimal control for elliptic Volterra-Lotka equations,
J. Math. Analysis and Applications 173 (1993) 603-619.
- 26
-
J.L. Lions,
Optimal control of systems governed by partial differential equations,
(Grundlehren der mathematischen Wissenschaften 170, Springer-Verlag,
Berlin, New York, 1971).
- 27
-
J.L. Lions and E. Magenes,
Non-Homogeneous Boundary Value Problems and Applications, Volume I,
(Grundlehren der mathematischen Wissenschaften 181, Springer-Verlag,
Berlin, New York, 1972).
- 28
-
H. Maurer and H.D. Mittelmann,
Optimization techniques for solving elliptic control problems with
control and state constraints. Part 1: Boundary control,
to appear in Comput. Optim. Appl.
- 29
-
H. Maurer and H.D. Mittelmann,
Optimization techniques for solving elliptic control problems with
control and state constraints. Part 2: Distributed control,
to appear in Comput. Optim. Appl.
- 30
-
Cs. Mészáros, The BPMPD interior point solver for convex quadratic problems,
WP 98-8, Computer and Automation Research Institute,
Hungarian Academy of Sciences, Budapest, Hungary (1998).
- 31
-
H.D. Mittelmann and P. Spellucci,
Decision Tree for Optimization Software,
World Wide Web, http://plato.la.asu.edu/guide.html (1998).
- 32
-
B.A. Murtagh and M.A. Saunders,
MINOS 5.4 User`s Guide, Report SOL 83-20R,
Department of Operations Research, Stanford University (Revised February 1995).
- 33
-
K.L. Teo, C.J. Goh and K.H. Wong,
A Unified Computational Approach to Optimal Control Problems,
(Longman Scientific and Technical, New York, 1981).
- 34
-
S. Stojanovic,
Optimal damping control and nonlinear elliptic systems,
SIAM J. Control Optimization 29 (1991) 594-608.
- 35
-
R. S. Vanderbei and D. F. Shanno,
An interior point algorithm for nonconvex nonlinear programming,
Comput. Optim. Appl., vol. 13, pp. 231-252, 1999.
Hans D. Mittelmann
2000-12-09