next up previous
Next: BMPR Up: The Codes Previous: MOSEK

LOQO

Authors: H. Y. Benson, Vanderbei
Version: 5.04, 8/2000;
Available: yes, from http://orfe.princeton.edu/ loqo/
Key paper: [27]
Features: NLP approach
Language, Input format: C; SDPA, Matlab, AMPL
Error computations: no
Solves: SOCP (SDP)

LOQO is a software package for solving general (smooth) nonlinear optimization problems of the form

\begin{displaymath}
\begin{array}{lrcl}
\mbox{minimize } & f(x) & & \\
\mbox{...
... \\
& h_i (x) & \ge & 0, \quad i \in \mathcal{I},
\end{array}\end{displaymath}

where $ x \in \mathbb{R}^n$, $ f: \mathbb{R}^n \rightarrow \mathbb{R}$, $ \mathcal{E}$ is the set of equalities, $ \mathcal{I}$ is the set of inequalities, $ g: \mathbb{R}^n \rightarrow \mathbb{R}^{\vert\mathcal{E}\vert}$, and $ h: \mathbb{R}^n \rightarrow \mathbb{R}^{\vert\mathcal{I}\vert}$. It implements an infeasible-primal-dual path-following method and requires that the problem be smooth, that is $ f$ and $ h$ be twice differentiable, and $ g$ be an affine function. Even though LOQO can handle nonconvex problems in general, it performs better with convex problems, where $ f$ is convex, $ g$ are affine, and $ h$ are concave functions.

Stopping criteria

$\displaystyle \Vert\mathcal{A}x - b\Vert _2 \leq 10^{-7}$      
$\displaystyle \Vert\mathcal{A}^* y + z -c\Vert _2 \leq 10^{-8}$      
$\displaystyle \log_{10} \left( \frac{ \vert \langle c, x \rangle - b^T y \vert }{\vert\langle c, x \rangle \vert + 1} \right) \leq -8$      


next up previous
Next: BMPR Up: The Codes Previous: MOSEK
Hans D. Mittelmann 2002-08-17