next up previous
Next: Appendix:Problem statistics and computational Up: paper93 Previous: The Problems, Input formats,

Bibliography

1
Andersen, E.D., Roos, C., Terlaky, T. (2000): A primal-dual interior-point method for conic quadratic optimization. this volume

2
Benson, S.J, Ye,, Y. (2001): DSDP3: Dual scaling algorithm for general positive semidefinite programming. Preprint ANL/MCS-P851-1000, Argonne National Labs

3
Borchers, B. (1999): CSDP, A C library for semidefinite programming. Optimization Methods and Software 11, 613-623

4
Burer, S., Monteiro, R.D.C. (2001): A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. this volume

5
Burer, S., Monteiro, R.D.C., Zhang, Y. (2001): Solving a class of semidefinite programs via nonlinear programming. Computational and Applied Mathematics, Rice University, Houston, Revised December 1999 and May 2001, submitted to Mathematical Programming

6
Burer, S., Monteiro, R.D.C., Zhang, Y. (2001): A computational study of a gradient-based log-barrier algorithm for a class of large-scale SDPs. this volume

7
Burer, S., Monteiro, R.D.C., Zhang, Y. (2001): Interior-point algorithms for semidefinite programming based on a nonlinear formulation. Department of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, submitted to Computational Optimization and Applications

8
DIMACS 7th Challenge website, http://dimacs.rutgers.edu/Challenges/Seventh/

9
Fujisawa, K., Fukuda, M., Kojima, M., Nakata, K (1999): Numerical evaluation of SDPA (SemiDefinite Programming Algorithm). High Performance Optimization, Kluwer Academic Publishers, 267-301

10
Fujisawa, K., Kojima, M., Nakata, K (1997): Exploiting sparsity in primal-dual interior-point methods for semidefinite programming. Mathematical Programming 79, 235-253

11
Fujisawa, K., Kojima, M., Nakata, K (2000): SDPA (Semidefinite Programming Algorithm) - User's Manual. Technical Report B-308, Tokyo Institute of Technology, http://is-mj.archi.kyoto-u.ac.jp/~ fujisawa/sdpa_doc.pdf

12
Helmberg, C. (2000): SBmethod -- a C++ implementation of the spectral bundle method. Manual to Version 1.1, ZIB-Report ZR 00-35, Konrad-Zuse-Zentrum für Informationstechnik Berlin, http://www.mathematik.uni-kl.de/ helmberg/SBmethod/

13
Helmberg, C., Kiwiel, K.C. (1999): A spectral bundle method with bounds. ZIB Preprint SC-99-37, Konrad-Zuse-Zentrum für Informationstechnik Berlin, to appear in Mathematical Programming

14
Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H. (1996): An interior-point method for semidefinite programming, SIAM Journal on Optimization 6, 342-361

15
Helmberg, C., Rendl, F. (2000): A spectral bundle method for semidefinite programming. SIAM Journal on Optimization 10, 673-696

16
Kiwiel, K.C. (1990): Proximity control in bundle methods for convex nondifferentiable minimization. Mathematical Programming 46, 105-122

17
Kojima, M., Shindoh, S., Hara, S. (1997): Interior-point methods for the monotone semidefinite linear complementarity problems. SIAM Journal on Optimization 7, 86-125

18
Mittelmann, H.D. (2002): Decision Tree for Optimization Software. http://plato.la.asu.edu/guide.html

19
Mittelmann, H.D. (2002): Benchmarks for Optimization Software. http://plato.la.asu.edu/bench.html

20
Andersen, E. (2002): MOSEK User's Guide: The MPS file format. http://www.mosek.com/download/doc/html/2/tools/manual/node15.html

21
NEOS Server for Optimization. http://www-neos.mcs.anl.gov/neos/

22
Rendl, F., Sotirov, R., Wolkowicz, H. (2001): Exploiting sparsity in interior point methods: Applications to SDP and QAP. Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada, in progress

23
Stewart, D.E., Leyk, Z. (1994): Meschach: Matrix Computation in C. Proceedings of the Center for Mathematics and Its Applications, The Australian National University, Volume 32

24
Sturm, J.F. (1999): Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11, 625-653

25
Sturm, J.F. (2000): Central region method, in High Performance Optimization, J.B.G. Frenk and C. Roos and T. Terlaky and S. Zhang (eds.), Kluwer Academic Publishers, 157-194

26
Tütüncü, R.H., Toh, K.C., Todd (2002): Solving semidefinite-quadratic-linear programs using SDPT3. this volume

27
Benson, H.Y., Vanderbei, R.J. (2002): Solving Problems with Semidefinite and Related Constraints Using Interior-Point Methods for Nonlinear Programming. this volume

28
Ye, Y., Todd, M.J., Mizuno, S. (1994): An $ O( \sqrt{ n} L) $-iteration homogeneous and self-dual linear programming algorithm. Mathematics of Operations Research 19, 53-67



Hans D. Mittelmann 2002-08-17