Latest Progress in Optimization Software

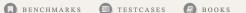
Hans D Mittelmann

School of Mathematical and Statistical Sciences Arizona State University

> INFORMS Annual Meeting Atlanta, GA 28 October 2025

Introduction

Recent Developments


Selected Benchmarks

Conclusions

Introduction

DECISION TREE FOR OPTIMIZATION SOFTWARE

BENCHMARKS FOR OPTIMIZATION SOFTWARE

By Hans Mittelmann (mittelmann at asu.edu)

END OF A BENCHMARKING ERA

For many years our benchmarking effort had included the solvers CPLEX, Gurobi, and XPRESS. Through an action by Gurobi at the 2018 INFORMS Annual Meeting this has come to an end. IBM and FICO demanded that results for their solvers be removed. See here for more details. The resulting void was filled by other developers. In August 2024 Gurobi decided to withdraw from the benchmarks as well and their results have been removed. See the note at the bottom of the MIPLIB benchmark.

What is on top of the Benchmark Page?

- Links to history and older benchmarks
- Especially details on the elimination of CPLEX, XPRESS, and Gurobi
- ► Hint that full solver logfiles are provided
- Explanation why performance profiles are not used
- ► Link to Matt Miltenberger's visualization tool

History and Scope of the Benchmarks

- ► Start about 1998
- ► Summary presented at INFORMS Annual starting 2002
- ▶ 22 benchmarks in these areas
 - ► TSP, (MI)LP, (MI)SOCP, SDP, convex/nonconvex (MI)QCP, QUBO, (MI)NLP, MPEC
- Codes evaluated: 46, of those 25 actively developed, 14 commercial
- ► Total separate runs: 138, needing up to 3 weeks

Recent Developments

The Benchmarks at a Turning Point

We are in the age of AI

- ▶ Potential use of over-tuning/machine learning
- benchmarks prone to AI except those with unknown datasets (LP, MIPLIB)
- ▶ Optverse (the AI code) is unavailable and cannot be compared to other codes; its numbers will be removed after the conference
- ▶ MIPLIB2024 to be published soon; will it be Al-proof?
- ▶ utilization of GPUs (accelerated computing), so far in LP, QP, SDP
- ▶ more solvers can handle nonconvexity (globally)

Selected Benchmarks

Selected Benchmarks

These seven benchmarks follow next:

- convex: LPfeas, MILP, SDP
- ▶ nonconvex: NLP, MIQCP(2), MINLP
- remember: "the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity"
- ► Talk will report some progress with accelerated computing; more substantial progress may be possible in the future

LPfeas Benchmark (find a primal-dual feasible point)

- ► Same own instance selection as in LPopt benchmark
- ▶ 49 published instances 16 undisclosed instances
- ► Intel i7-11700K, 3.6GHz, 64GB, time limit 15000 secs, 1000 for GPU
- shifted geometric mean of runtimes

LPfeas Benchmark (additional instances with GPU)

- selected problems from Oliver Hinder's collection (github, julia)
- two of five problems in various dimensions; time limit 15000 secds

problem	cuPDLP	cu0pt	COPT-G	cuPDLPx	HPR-LP	13b1GPU
heat_250_10_500_200	7288	.====== m		+		t
heat_250_10_500_300	3696	m m	m m	t t	t t	t
heat_250_10_500_400	3014	m	m	t	t	t
mcf_2500_100_500	1166	m	763	1103	t	t
mcf_5000_50_500	2260	m	795	6660	t	t
mcf_5000_100_250	1461	m	842	5360	t	t
=======================================	========				======	=======
	constraint	S	variables	3	nonzeros	

15625000 31628008 heat* 125000000 1.5m mcf* 126m 253m for larger dimensions there are memory issues

Crossover

▶ The unscaled geomean ratio LPfeas/LPopt allows to assess the crossover effort.

Hans D Mittelmann

Code	Ratio	Crossover
COPT	25.3/38.5	52%
HiGHS	556/659	19%
MOSEK	83.3/288	246%
OPTV	38.9/67.8	74%
XOPT	146/255	75%

Performance on known and unknown datasets

► This comparison attempts to sense any tuning effort.

LPFEAS-Benchmark on the 49 public or all 65 instances COPT MOSEK Highs XOPT OPTV CUPDL CUOPT CUPDLX COPTG HPRLP PUBLTC. 1.25 3.63 25.7 4.87 1.74 4.13 1.32 2.34 3.78 1.19 3.93 26.2 6.87 2.08 2.22 1.06 1.94 AT.T. 3.03

LPOPT-Benchmark on the 49 public or all 65 instances probs COPT OPTV MOSEK HiGHS GLOP PUBLTC 27.3 1 1.45 5.95 17.0 77.9 116 4.15 1 1.76 7.49 17.1 59.7 94.1 6.63 ΔT.T. 27.4

The final MIPLIB2017 Benchmark

- ► Total of 240 instances
- ► Sizes up to 1.5m/1m/43m rows/cols/nonzeros
- ► AMD Ryzen 9 5900X (12 cores, 128GB), 7,200 secs wall clock
- modification through random row and column reordering
- ▶ NOTE! OPTV received on 10/15, COPT on 9/21

	COPT	SCIP	SCIPC	HiGHS	XOPT	OPTV XSMOO		
${\tt unscal}$	133	1175	935	880	677	[117] 551		
scaled	1.14	10.1	8.02	7.55	5.81	[1] 4.73		
solved	218	128	145	157	160	[218] 172		

MIPLIB redone; will be posted after conference

Since the previous reordering of the MIPLIB dataset was done a while ago, the random seed was changed and the benchmark rerun

======	======		======	======	======	=====	======	=======
	COPT	SCIP	SCIPC	HiGHS	XOPT	OPTV	XSM00	13b1GPU
unscal	103					139	515	77
scaled	1					1.35	5.00	
solved	217					211	171	228

to be completed

Several SDP-codes on sparse and other SDP problems

- ► Total of 75 instances, own instance selection
- ► Sizes up to 100k/100k/450m variables/constraints/nonzeros
- ► AMD Ryzen 9 5900X, 12 cores, 128GB, 40,000 secs wall clock

problem	COPT	CSDP	MOSEK	SDPA	SDPT3	SeDuMi	cuLoRAD&		
	1	5.38	2.67	7.96	5.30	29.8	2.99		
count of "a"	6	5	1	18	13	2	14		
solved of 75	75	70	73	61	69	62	71		

Hans D Mittelmann

"a": reduced accuracy

AMPI-NI P Benchmark

- ► Total of 47 instances
- ► Sizes up to 140k/260k constraints/variables
- ► AMD Ryzen 9 5900X (12 cores, 128GB), 7,200 secs wall clock

47 problems	IPOPT\$	KNIT	SNOPT	CONPT	WORHP	MATLB	COPT	UNO	[OPTV]
scaled geomean	15.3 46	2.56 46		164 26		48.8 36		364 22	[1] [47]

Higher performance of IPOPT possible for different LA routines

Discrete Non-Convex QPLIB Benchmark (non-binary)

- ► Total of 160 instances
- ► Sizes up to 36k/17k/116k/48k variables/binaries/constraints/quads
- ► Instances from QPLib
- ▶ Intel Xeon Gold 6226R 2.90GHz (32 cores, 512GB), 3 hrs, 8 threads

=======	======	======	=====	=======	=======
	BARON	SHOT SCIP		ANTIGONE	COPT
${\tt unscaled}$	513	74.6	2109	4798	155
scaled	6.87	1	29.3	64.3	2.07
solved	69	95	40	28	88

Continuous Non-Convex QPLIB Benchmark

- ► Total of 102 instances
- ► Sizes up to 200k/140k/140k variables/constraints/quads
- ▶ Intel Xeon Gold 6226R 2.90GHz (32 cores, 512GB), 3 hrs, 8 threads
- ► Instances from QPLib

=======									
ANT	ANTIGONE		MINOTAUR	SCIP	COPT				
unscaled	2169	428	1868	4649	1121				
scaled	5.23	1	4.49	11.4	2.62				
solved	27	35	25	14	25				

Mixed Integer Nonlinear Programming Benchmark

- ► Total of 200 instances; run through GAMS
- ► Sizes up to 100k/100k/5k variables/lin constraints/nonlin constraints
- ► AMD Ryzen 9 5900X (12 cores, 128GB), 7,200 secs wall clock
- Instances from MINLPLib

	BARON	GUROBI*	LINDO	SCIP	SHOT#	XPRESS*			
unscaled	73.6		391.4	126.0	414.3				
scaled	1.0		5.3	1.7	5.6				
solved	161		116	153	96				

*: publication suppressed

#: SHOT can only handle quadratic instances

Conclusions

Conclusions

Some Takeaways

- COPT leads in both CPU and GPU versions for LP, in MILP, SDP, SOCP and NLP
- COPT is second to SHOT-Gurobi in nonconvex MIQCP and to BARON in QCP
- cuOpt and COPT-G lead among GPU codes; COPT leads among CPU codes
- cuPDLP-C only GPU code to solve all large problems
- ▶ BARON continues to lead in MINLP; SCIP is a very strong second

THANK YOU

Questions?

Slides of talk at https://plato.asu.edu/talks/informs2025.pdf