Latest Progress in Optimization Software

Hans D Mittelmann

School of Mathematical and Statistical Sciences Arizona State University

> INFORMS Annual Meeting Phoenix, AZ 16 October 2023

Outline

Introduction

Selected Benchmarks

Conclusions

DECISION TREE FOR OPTIMIZATION SOFTWARE

BENCHMARKS FOR OPTIMIZATION SOFTWARE

By Hans Mittelmann (mittelmann at asu.edu)

END OF A BENCHMARKING ERA

For many years our benchmarking effort had included the solvers CPLEX, Gurobi, and XPRESS. Through an action by Gurobi at the 2018 INFORMS Annual Meeting this has come to an end. IBM and FICO demanded that results for their solvers be removed and then we decided to temporarily remove those of Gurobi as well. CPLEX was in fifteen of the benchmarks, Gurobi and XPRESS in thirteen. See here for more details. In late November 2019 selected benchmarks for Gurobi were added. A partial record of previous benchmarks can be obtained from this webpage and some additional older benchmarks

Latest Progress in Optimization Software Hans D Mittelmann

KSI MATHEMATICS AND STATISTICS

What is on top of the Benchmark Page?

- Links to history and older benchmarks
- Especially the 2018 event eliminating CPLEX and XPRESS
- Hint that full solver logfiles are provided
- Explanation why performance profiles are not used
- Link to Matt Miltenberger's visualization tool

Visualizations of Mittelmann benchmarks

Interactive plots showing pairwise time differences for every instance and every solver

View On GitHub

LPfeas Benchmark (find PD feasible point) (5 Sep 2023)

LPopt Benchmark (find optimal basic solution) (5 Sep 2023)

Large Network-LP Benchmark (commercial vs free) (18 Aug 2023)

The MIPLIB2017 Benchmark Instances - 8 threads (19 Aug 2023)

MILP cases that are slightly pathological (25 Jun 2023)

Infeasibility Detection for MILP Problems (27 Jun 2023)

Several SDP-codes on sparse and other SDP problems (19 Aug 2023)

Large Second Order Cone Benchmark (27 Sep 2023)

Mixed-integer SOCP Benchmark (27 Sep 2023) Interactive charts comparing the results of Hans Mittelmann's benchmarks. Each solver can be selected to show pairwise running time factors for every other solver in the respective benchmark. These plots should make browsing the results easier. The score (scaled shifted geometric mean) is recomputed using the reported solving times. We also calculate a "virtual best" or "ensemble" solver that picks the best performance over all solvers for every single problem instance. This might reveal how much potential the individual solvers still have. Please let me know if you have a question or if there is an error.

LPfeas Benchmark (find PD feasible point) (5 Sep 2023)

Choose base solver for comparison:

solver	score (as reported)	solved of 65
🚖 virtual best	0.72	100%
5 COPT-6.5.0	1.00 (1.00)	100%
💩 Gurobi-10.0.0	1.07 (1.07)	100%
ŏ MOSEK-10.1.9	2.49 (2.49)	98%

Latest Progress in Optimization Software

Hans D Mittelmann

KSU MATHEMATICS AND STATISTICS

LPfeas Benchmark (find PD feasible point)

shifted time ratios (shift=10 seconds) using virtual best as base solver (5 Sep 2023) - mattmilten.github.io/mittelmann-plots

Latest Progress in Optimization Software

Hans D Mittelmann

ISI MATHEMATICS AND STATISTICS

History and Scope of the Benchmarks

- Start about 1998
- Summary presented at INFORMS Annual starting 2002
- 22 benchmarks in these areas
 - ► TSP, (MI)LP, (MI)SOCP, SDP, convex/nonconvex (MI)QCP, QUBO, (MI)NLP, MPEC
- Codes evaluated: 48, of those 28 actively developed, 14 commercial
- Running times per code: up to 3 weeks

COMBINATORIAL OPTIMIZATION

Concorde-TSP with different LP solvers (3-3-2023)

LINEAR PROGRAMMING

The Simplex and Barrier benchmarks are replaced by benchmarks that show how well solvers find a primal-dual feasible point (as barrier methods in general do) or an optimal basic solution (as simplex methods in general do). Codes do not have to use a textbook version of either method.
CP LPfeas Benchmark (find a PD feasible point) (10-4-2023)
CP LPopt Benchmark (find optimal basic solution) (10-5-2023)

C Large Network-LP Benchmark (commercial vs free) (10-4-2023)

MIXED INTEGER LINEAR PROGRAMMING

C MILP Benchmark - MIPLIB2017 (10-4-2023)

MILP cases that are slightly pathological (10-5-2023)
 Infeasibility Detection for MILP Problems (10-4-2023)

SEMIDEFINITE/SQL PROGRAMMING

SOL problems from the 7th DIMACS Challenge (8-8-2002)

Latest Progress in Optimization Software

Hans D Mittelmann

MISOCP Benchmark (9-27-2023)

NONLINEAR PROGRAMMING

AMPL-NLP Benchmark (1-18-2022)

MIXED INTEGER QPS AND QCPS

Pon-commercial convex QP Benchmark (9-16-2021)
Binary Non-Convex QPLIB Benchmark (7-12-2023)
Non-Convex QUBO-QPLIB Benchmark (9-20-2023)
Discrete Non-Convex QPLIB Benchmark (non-binary) (7-14-2023)
Continuous Non-Convex QPLIB Benchmark (7-18-2023)
Convex Continuous QPLIB Benchmark (9-28-2023)
Convex Discrete OPLIB Benchmark (9-27-2023)

MIXED INTEGER NONLINEAR PROGRAMMING

MINLP Benchmark (7-10-2023)

Latest Progress in Optimization Software

Selected Benchmarks

These seven benchmarks follow next:

- convex: LPfeas, LPopt, MILP, SDP
- nonconvex: QUBO-QPLIB, MIQCP, MINLP
- remember: "the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity"
- Talk will report incremental progress; more substantial progress will be announced at meeting: Gurobi-Nonlinear, XPRESS-Global etc

LPfeas Benchmark (find PD feasible point)

Top of benchmark table shown

- ► Total of 65 instances (16 hidden)
- Sizes up to 30m/30m/35m rows/cols/nonzeros
- Intel i7-11700K, 3.6GHz, 64GB, 15,000 secs wall clock

Own instance selection

65 probs	1.11	1	1.80	66.4	2.60	19.2	26.9	22.9	17.0
solved	65	65	62	36	64	52	50	43	49
probs	Gurobi	COPT	MDOPT	TULIP	MOSEK	HiGHS	MATL	KNITRO	PDLP%
	========								

LPopt Benchmark (find optimal basic solution)

Same own instance selection as in LPfeas benchmark
 COPT-7.0.0, MindOpt-1.0.0, HiGHS-1.6.0, Gurobi-10.0, OptVerse-0.2.13
 MOSEK-10.1.9, SOPLEX-6.0.0

Intel i7-11700K, 3.6GHz, 64GB, 15,000 secs wall clock

65 probs	26.1	1.36	1	1.89	3.95	5.61	17.4	57.0	87.2	39.8
solved	40	65	65	63	57	52	51	33	32	42
	======	======	=====	=====	=====	======	=======	======	=====	=====
probs	CLP	Gurob	COPT	MDOPT	OPTV	MOSEK	HiGHS	GLOP	SPLX	MATL

The MIPLIB2017 Benchmark Instances

- Total of 240 instances
- Sizes up to 1.5m/1m/43m rows/cols/nonzeros
- Intel i7-11700K, 3.6GHz, 64GB, 7,200 secs wall clock

	CBC	Gurobi	COPT	SCIP	SCIPC	HiGHS	Matlab	SMOO	XSMOO	MDOPT
unscal	 1328	81.5	126	888	727	 720	2715 2	612	510 5510	 301
scaled	16.3	1	1.54	10.9	8.92	8.83	33.3	7.51	6.26	3.70
solved	107	227	212	137	152	159	73	163	172	196
(X) GMOD.	(V) Cm	=========	======= (Fiborg(======== TD+U;CI		======= ov/gopl	======== ov)	======		

Several SDP-codes on sparse and other SDP problems

- ► Total of 75 instances, Own instance selection
- Sizes up to 100k/100k/450m variables/constraints/nonzeros
- AMD Ryzen 9 5900X, 12 cores, 128GB , 40,000 secs wall clock

	1	5.21	3.22	10.5	5.14	28.9	7.86	1.44
count of "a" solved of 75	6 75	5 70	2 73	17 61	13 69	2 62	11 70	12 75
problem	COPT	CSDP	MOSEK	SDPA	SDPT3	SeDuMi	HDSDP	MDOPT
"a": reduced	accurac	 у						

Nonconvex QUBO-QPLIB Benchmark

- Total of 23 instances
- (variables, densities) from (1225, 0.3) to (150, 78.9)
- ▶ AMD Ryzen 9 5900X, 12 cores, 128GB , 3,600 secs wall clock
- CPLEX in BARON, SCIP, OCTERACT, QUBOWL, Gurobi in SHOT

DTOD# BARON SCIP MCSPARSE OCTERACT CURORI OUROWL BIORIN SHOT	====================================	SCIP	MCSPARSE		GUROBT	OUBOWI.	======================================	SHOT
prob# BARON SCIP MCSPARSE OCTERACT GUROBI QUBOWL BIQBIN SHOT	prob# BARON	SCIP	MCSPARSE	OCTERACT	GUROBI	QUBOWL	BIQBIN	SHOT

Discrete Non-Convex QPLIB Benchmark (non-binary)

- ► Total of 160 instances
- Sizes up to 36k/120k/5k variables/total constraints/nonlin constraints
- ▶ Intel Xeon E5-4657L, 48 cores, 512GB, 8 threads, 10,800 secs wall clock

mean	31.2	7.24	1.19	37.5	18.7	3.21	1
solved	29	56	81	15	37	79	81
prob#	ANTIGONE	BARON	SHOT\$	MINOTAUR	SCIP	OCTERACT	GUROBI\$
							==========

\$ Gurobi has 16 instances with constraint violations > 1e-6 SHOT has in all solved instances constraint violations < 1e-8 OCTERACT does not report.

Mixed Integer Nonlinear Programming Benchmark

- Total of 87 instances; run through GAMS
- Sizes up to 100k/100k/5k variables/lin constraints/nonlin constraints
- Intel i7-11700K, 3.6GHz, 64GB, 7,200 secs wall clock
- Instances from MINLPLib

ANT	IGONE	BARON	COUENNE	LINDO	OCTERACT	SCIP
	======					
scaled	39.3	2.3	89.8	32.8	1.0	10.3
solved	53	77	24	42	87	64
	======			========		
Since Octeract version 4.7.1	will ł	be removed	from GAMS,	it will	be frozen	at

- Gurobi and BARON have serious competition
- SDP code development has picked up again; COPT, MindOpt, MOSEK lead
- SMOO is strong in MILP but Gurobi, COPT, MindOpt lead
- SCIP is strong in MINLP: OCTERACT, BARON, SCIP
- Global optimization is now standard but challenges remain

THANK YOU

Questions?

Slides of talk at http://plato.asu.edu/talks/informs2023.pdf

19 / 19