Application of QAP in Modulation Diversity (MoDiv) Design

Hans D Mittelmann

School of Mathematical and Statistical Sciences Arizona State University

> INFORMS Annual Meeting Philadelphia, PA 4 November 2015

This is joint work with Wenhao Wu and Zhi Ding, UC Davis

AFOSR support (ASU): FA 9550-12-1-0153 and FA 9550-15-1-0351 NSF support (UCD): CNS-1443870, ECCS-1307820, and CCF-1321143

Previous related AFOSR-funded work

Based on a series of our papers on semidefinite relaxation bounds:

X, Wu, H. D. Mittelmann, X. Wang, and J. Wang, On Computation of Performance Bounds of Optimal Index Assignment, IEEE Trans Comm 59(12), 3229-3233 (2011)

First paper to exactly solve a size 16 Q3AP from communications:

H. D. Mittelmann and D. Salvagnin, *On Solving a Hard Quadratic 3-Dimensional Assignment Problem*, Math Progr Comput 7(2), 219-234 (2015)

Outline

Application of QAP in Modulation Diversity (MoDiv) Design

Background MoDiv Design for Two-Way Amplify-and-Forward Relay HARQ Channel MoDiv Design for Multiple-Input and Multiple-Output HARQ Channel Conclusion

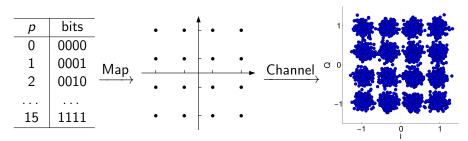
Outline

Application of QAP in Modulation Diversity (MoDiv) Design Background

MoDiv Design for Two-Way Amplify-and-Forward Relay HARQ Channel

MoDiv Design for Multiple-Input and Multiple-Output HARQ Channel Conclusion

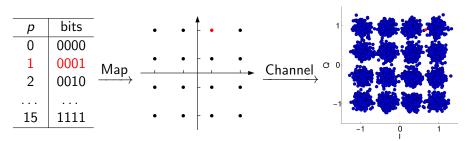
Modulation Mapping



- Imperfect wireless channel tends to cause demodulation errors.
- Constellation points closer to each other are more likely to be confused.

Modulation mapping needs to be carefully designed!

Modulation Mapping



- Imperfect wireless channel tends to cause demodulation errors.
- Constellation points closer to each other are more likely to be confused.

Modulation mapping needs to be carefully designed!

Single Transmission: Gray-mapping

Strategy (Gray-mapping)

Neighboring constellation points (horizontally or vertically) differ only by 1 bit, so as to minimize the Bit Error Rate (BER).

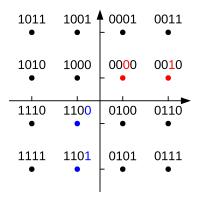


Figure : Gray-mapping for 16-QAM, 3GPP TS 25.213.

HARQ with Constellation Rearrangement (CoRe)

Hybrid Automatic Repeat reQuest (HARQ)

- Same piece of information is retransmitted again and again, and combined at the receiver until it is decoded successfully or expiration.
- An error control scheme widely used in modern wireless systems such as HSPA, WiMAX, LTE, etc.

Constellation Rearrangement (CoRe)

- For each round of retransmission, different modulation mappings are used (explained next).
- Exploit the Modulation Diversity (MoDiv).

An Example of CoRe



Figure : Original transmission.

Figure : First retransmission.

- Original transmission: 0111 is easily confused with 1111, but well distinguished from 0100.
- First retransmission: 0111 should now be mapped far away from 1111, but can be close to 0100.

An Example of CoRe

Figure : Original transmission.

Figure : First retransmission.

- Original transmission: 0111 is easily confused with 1111, but well distinguished from 0100.
- First retransmission: 0111 should now be mapped far away from 1111, but can be close to 0100.

General Design of MoDiv Through CoRe

Challenges

- 1. More than 1 retransmissions?
- 2. More general wireless channel models?
- 3. Larger constellations (e.g. 64-QAM)?

We formulate 2 different MoDiv design problems into Quadratic Assignment Problems (QAPs) and demonstrate the performance gain over existing CoRe schemes.

Outline

Application of QAP in Modulation Diversity (MoDiv) Design

Background MoDiv Design for Two-Way Amplify-and-Forward Relay HARQ Channel MoDiv Design for Multiple-Input and Multiple-Output HARQ Channel Conclusion

Two-Way Relay Channel (TWRC) with Analog Network Coding (ANC)

- ► System components: 2 sources (S₁, S₂) communicate with each other with the help of 1 relay (R).
- Alternating between 2 phases:
 - Multiple-Access Channel (MAC) phase: the 2 sources transmit to the relay simultaneously.
 - Broadcast Channel (BC) phase: the relay amplify and broadcast the signal received during the MAC phase back to the 2 sources
- Assume Rayleigh-fading channel: g and h are complex Gaussian random variables with 0 means.

Two-Way Relay Channel (TWRC) with Analog Network Coding (ANC)

- System components: 2 sources (S₁, S₂) communicate with each other with the help of 1 relay (R).
- Alternating between 2 phases:
 - Multiple-Access Channel (MAC) phase: the 2 sources transmit to the relay simultaneously.
 - Broadcast Channel (BC) phase: the relay amplify and broadcast the signal received during the MAC phase back to the 2 sources
- Assume Rayleigh-fading channel: g and h are complex Gaussian random variables with 0 means.

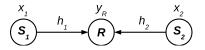


Figure : TWRC-ANC channel.

$$y_R = h_1 x_1 + h_2 x_2 + n_R$$

Two-Way Relay Channel (TWRC) with Analog Network Coding (ANC)

- ► System components: 2 sources (S₁, S₂) communicate with each other with the help of 1 relay (R).
- Alternating between 2 phases:
 - Multiple-Access Channel (MAC) phase: the 2 sources transmit to the relay simultaneously.
 - Broadcast Channel (BC) phase: the relay amplify and broadcast the signal received during the MAC phase back to the 2 sources
- Assume Rayleigh-fading channel: g and h are complex Gaussian random variables with 0 means.

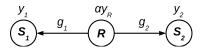


Figure : TWRC-ANC channel.

 $y_1 = \alpha g_1 y_R + n_1,$ $y_2 = \alpha g_2 y_R + n_2$

HARQ-Chase Combining (CC) Protocol

- Q: size of the constellation.
- ► *M*: maximum number of retransmissions.
- ▶ ψ_m[p], m = 0,..., M, p = 0,..., Q − 1: constellation mapping function between "label" p to a constellation point for the m-th retransission.

Due to symmetry of the channel, consider the transmission from S_1 to S_2 only. The received signal during the *m*-th retransmission of label *p* is:

$$y_2^{(m)} = \alpha^{(m)} g_2^{(m)} (h_1^{(m)} \psi_m[p] + h_2^{(\tilde{m})} \psi_{\tilde{m}}[\tilde{p}] + n_R^{(m)}) + n_2^{(m)},$$

HARQ-Chase Combining (CC) Protocol

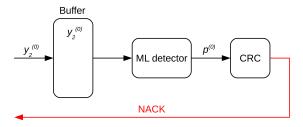
- ► Q: size of the constellation.
- *M*: maximum number of retransmissions.
- ▶ ψ_m[p], m = 0,..., M, p = 0,..., Q − 1: constellation mapping function between "label" p to a constellation point for the m-th retransission.

Due to symmetry of the channel, consider the transmission from S_1 to S_2 only. The received signal during the *m*-th retransmission of label *p* is:

$$y_2^{(m)} = \alpha^{(m)} g_2^{(m)} (h_1^{(m)} \psi_m[p] + n_R^{(m)}) + n_2^{(m)}$$
, (after SIC)

HARQ-Chase Combining (CC) Protocol (Continued)

The receiver combines all the received symbols across all retransmissions so long until decoding is determined successful.

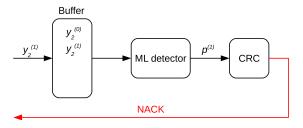


Maximum Likelihood (ML) detector

$$p^* = \arg\min_p \sum_{k=0}^m \frac{|y_2^{(k)} - \alpha^{(k)}g_2^{(k)}h_1^{(k)}\psi_k[p]|^2}{\sigma_2^2 + (\alpha^{(k)})^2\sigma_R^2|g_2^{(k)}|^2}.$$

HARQ-Chase Combining (CC) Protocol (Continued)

The receiver combines all the received symbols across all retransmissions so long until decoding is determined successful.

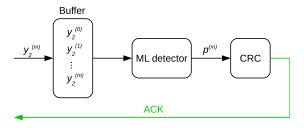


Maximum Likelihood (ML) detector

$$p^* = \arg\min_p \sum_{k=0}^m \frac{|y_2^{(k)} - \alpha^{(k)}g_2^{(k)}h_1^{(k)}\psi_k[p]|^2}{\sigma_2^2 + (\alpha^{(k)})^2\sigma_R^2|g_2^{(k)}|^2}.$$

HARQ-Chase Combining (CC) Protocol (Continued)

The receiver combines all the received symbols across all retransmissions so long until decoding is determined successful.



Maximum Likelihood (ML) detector

$$p^* = \arg\min_{p} \sum_{k=0}^{m} \frac{|y_2^{(k)} - \alpha^{(k)}g_2^{(k)}h_1^{(k)}\psi_k[p]|^2}{\sigma_2^2 + (\alpha^{(k)})^2\sigma_R^2|g_2^{(k)}|^2}.$$

MoDiv Design: Criterion

Bit Error Rate (BER) upperbound after *m*-th retransmission

$$P_{BER}^{(m)} = \sum_{p=0}^{Q-1} \sum_{q=0}^{Q-1} \frac{D[p,q]}{Q \log_2 Q} P_{PEP}^{(m)}(q|p),$$

- D[p, q]: hamming distance between the bit representation of label p and q.
- P^(m)_{PEP}(q|p): pairwise error probability (PEP), the probability that when label p is transmitted, the receiver decides q is more likely than p after m-th retransmission.

MoDiv Design: Criterion (Continued)

Is minimizing $P_{BER}^{(m)}$ over the mappings $\psi_1[\cdot], \ldots, \psi_m[\cdot]$ directly a good idea?

- 1. No one knows how many retransmissions is needed in advance (value of m).
- 2. Jointly designing all m mappings is prohibitively complex.
- 3. $P_{PEP}^{(m)}(q|p)$ can only be evaluated numerically, very slow and could be inaccurate.

MoDiv Design: Modified Criterion

1. Successive optimization instead of joint optimization.

Joint:
$$\min_{\psi^{(k)}, k=0,...,m} P_{BER}^{(m)}, m = 1,..., M$$

2. A closed-form approximation to $P_{PEP}^{(m)}(q|p)$ that can be iteratively updated for growing *m*.

$$ilde{P}_{PEP}^{(m)}(q|p) = ilde{P}_{PEP}^{(m-1)}(q|p) ilde{E}_k[p,q]$$

 $ilde{P}_{PEP}^{(-1)}(q|p) = 1/2$

MoDiv Design: Modified Criterion

1. Successive optimization instead of joint optimization.

Joint:
$$\min_{\psi^{(k)}, k=0,...,m} P_{BER}^{(m)}, m = 1,..., M$$

Successive:
$$\min_{\psi^{(m)}|\psi^{(k)},k=0,...,m-1} \tilde{P}^{(m)}_{BER}, m = 1,..., M$$

2. A closed-form approximation to $P_{PEP}^{(m)}(q|p)$ that can be iteratively updated for growing *m*.

$$ilde{P}_{PEP}^{(m)}(q|p) = ilde{P}_{PEP}^{(m-1)}(q|p) ilde{E}_k[p,q] \ ilde{P}_{PEP}^{(-1)}(q|p) = 1/2$$

ISI MATHEMATICS AND STATISTICS 16 / 41

MoDiv Design: Modified Criterion

1. Successive optimization instead of joint optimization.

Joint:
$$\min_{\psi^{(k)}, k=0,...,m} P^{(m)}_{BER}, \ m=1,\ldots,M$$

Successive:
$$\min_{\psi^{(m)}|\psi^{(k)},k=0,...,m-1} \tilde{P}^{(m)}_{BER}, m = 1,...,M$$

2. A closed-form approximation to $P_{PEP}^{(m)}(q|p)$ that can be iteratively updated for growing *m*.

$$ilde{P}^{(m)}_{PEP}(q|p) = ilde{P}^{(m-1)}_{PEP}(q|p) ilde{E}_k[p,q]
onumber \ ilde{P}^{(-1)}_{PEP}(q|p) = 1/2$$

Approximation of the Pairwise Error Probability

$$\begin{split} \tilde{E}_{k}[p,q] &\approx \mathbb{E}\left[\exp\left(-\frac{(\alpha^{(k)})^{2}\epsilon_{k}[p,q]|g_{2}^{(k)}|^{2}|h_{1}^{(k)}|^{2}}{4(\tilde{\sigma}_{2}^{(k)})^{2}}\right)\right],\\ \tilde{E}_{k}[p,q] &= \frac{4\sigma_{R}^{2} + \beta_{h_{1}}\epsilon_{k}[p,q]v\exp(v)Ei(v)}{u}\\ u &= 4\sigma_{R}^{2} + \beta_{h_{1}}\epsilon_{k}[p,q], \ v &= \frac{4\sigma_{2}^{2}}{\tilde{\alpha}^{2}\beta_{g_{2}}u}, \ \tilde{\alpha} &= \sqrt{\frac{P_{R}}{\beta_{h_{1}}P_{1} + \beta_{h_{2}}P_{2} + \sigma_{R}^{2}}} \end{split}$$

 β_{g2}, β_{h1}: the variance of the complex Gaussian distributed channel g2 and h1.

•
$$\sigma_R^2$$
, σ_2^2 : the noise power at R and S_2 .

•
$$\epsilon_k[p,q] = \psi_k[p] - \psi_k[q].$$

▶ P_R, P_1, P_2 : the maximum transmitting power constraint at R, S_1, S_2 .

Representation of CoRe

Representing $\psi_m[\cdot]$ with Q^2 binary variables:

$$x_{pi}^{(m)} = \begin{cases} 1 & \text{if } \psi_m[p] = \psi_0[i] \\ 0 & \text{otherwise.} \end{cases} \quad p, i = 0, \dots, Q-1$$

 ψ_0 represents Gray-mapping for the original transmission (fixed). Constraints: $\psi_m[\cdot]$ as a permutation of $0, \ldots, Q-1$

Q-1		<i>i</i> = 0	i = 1	<i>i</i> = 2	<i>i</i> = 3
$\sum x_{pi} = 1$	<i>p</i> = 0	0	1	0	0
$\overline{p=0}$	p = 1	0	0	1	0
Q-1	<i>p</i> = 2	1	0	0	0
$\sum x_{pi} = 1$	<i>p</i> = 3	0	0	0	1
<i>i</i> =0					

A Successive KB-QAP Formulation

MoDiv design via successive Koopman Beckmann-form QAP

1. Set m = 1. Initialize the "distance" matrix and the approximated PEP, for i, j, p, q = 0, ..., Q - 1:

$$d_{ij} = \tilde{E}_0[i,j], \ \tilde{P}_{PEP}^{(0)}(q|p) = d_{pq}/2$$

2. Evaluate the "flow" matrix:

$$f_{pq}^{(m)} = \frac{D[p,q]}{Q\log_2 Q} \tilde{P}_{PEP}^{(m-1)}(q|p)$$

3. Solve the *m*-th KB-QAP problem:

$$\min_{\{x_{\rho i}^{(m)}\}} \sum_{p=0}^{Q-1} \sum_{i=0}^{Q-1} \sum_{q=0}^{Q-1} \sum_{j=0}^{Q-1} f_{pq}^{(m)} d_{ij} x_{pi}^{(m)} x_{qj}^{(m)}$$

A Successive KB-QAP Formulation

MoDiv design via successive Koopman Beckmann-form QAP

1. Set m = 1. Initialize the "distance" matrix and the approximated PEP, for i, j, p, q = 0, ..., Q - 1:

$$d_{ij} = \tilde{E}_0[i,j], \ \tilde{P}_{PEP}^{(0)}(q|p) = d_{pq}/2$$

2. Evaluate the "flow" matrix:

$$f_{pq}^{(m)} = rac{D[p,q]}{Q\log_2 Q} \widetilde{P}_{PEP}^{(m-1)}(q|p)$$

3. Solve the *m*-th KB-QAP problem:

$$\min_{\{x_{pi}^{(m)}\}} \sum_{p=0}^{Q-1} \sum_{i=0}^{Q-1} \sum_{q=0}^{Q-1} \sum_{j=0}^{Q-1} f_{pq}^{(m)} d_{ij} x_{pi}^{(m)} x_{qj}^{(m)}$$

A Successive KB-QAP Formulation

MoDiv design via successive Koopman Beckmann-form QAP

1. Set m = 1. Initialize the "distance" matrix and the approximated PEP, for i, j, p, q = 0, ..., Q - 1:

$$d_{ij} = \tilde{E}_0[i,j], \ \tilde{P}_{PEP}^{(0)}(q|p) = d_{pq}/2$$

2. Evaluate the "flow" matrix:

$$f_{pq}^{(m)} = \frac{D[p,q]}{Q\log_2 Q} \tilde{P}_{PEP}^{(m-1)}(q|p)$$

3. Solve the *m*-th KB-QAP problem:

$$\min_{\{x_{pi}^{(m)}\}} \sum_{p=0}^{Q-1} \sum_{i=0}^{Q-1} \sum_{q=0}^{Q-1} \sum_{j=0}^{Q-1} f_{pq}^{(m)} d_{ij} x_{pi}^{(m)} x_{qj}^{(m)}$$

A Successive KB-QAP Formulation (Continued)

MoDiv design via successive Koopman Beckmann-form QAP

4. Update PEP:

$$ilde{P}_{PEP}^{(m)}(q|p) = \sum_{i=0}^{Q-1} \sum_{j=0}^{Q-1} ilde{P}_{PEP}^{(m-1)}(q|p) d_{ij} \hat{x}_{pi}^{(m)} \hat{x}_{qj}^{(m)}$$

where $\hat{x}_{pi}^{(m)}$ is the solution from Step 3.

5. Increase m by 1, return to Step 2 if $m \leq M$.

A Successive KB-QAP Formulation (Continued)

MoDiv design via successive Koopman Beckmann-form QAP

4. Update PEP:

$$ilde{P}^{(m)}_{PEP}(q|p) = \sum_{i=0}^{Q-1} \sum_{j=0}^{Q-1} ilde{P}^{(m-1)}_{PEP}(q|p) d_{ij} \hat{x}^{(m)}_{pi} \hat{x}^{(m)}_{qj}$$

where $\hat{x}_{pi}^{(m)}$ is the solution from Step 3.

5. Increase *m* by 1, return to Step 2 if $m \leq M$.

• 64-QAM constellation (Q = 64).

- Maximum number of 4 retransmissions (M = 4).
- Assume the relay R and destination S₂ have the same Gaussian noise power σ².
- Use a robust tabu search algorithm¹ to solve each QAP numerically.
- Compare 3 MoDiv schemes:
 - 1. No modulation diversity (NM).
 - 2. A heuristic CoRe scheme for HSPA²(CR).
 - 3. QAP-based solution (QAP).

¹E. Taillard, "Robust taboo search for the quadratic assignment problem," Parallel Computing, vol.17, no.4, pp.443-455, 1991.

² "Enhanced HARQ Method with Signal Constellation Rearrangement," in 3rd Generation Partnership Project (3GPP), Technical Specification TSGR1#19(01)0237, Mar. 2001.

• 64-QAM constellation (Q = 64).

- Maximum number of 4 retransmissions (M = 4).
- Assume the relay R and destination S₂ have the same Gaussian noise power σ².
- ► Use a robust tabu search algorithm¹to solve each QAP numerically.
- Compare 3 MoDiv schemes:
 - 1. No modulation diversity (NM).
 - 2. A heuristic CoRe scheme for HSPA²(CR).
 - 3. QAP-based solution (QAP).

¹E. Taillard, "Robust taboo search for the quadratic assignment problem," Parallel Computing, vol.17, no.4, pp.443-455, 1991.

² "Enhanced HARQ Method with Signal Constellation Rearrangement," in 3rd Generation Partnership Project (3GPP), Technical Specification TSGR1#19(01)0237, Mar. 2001.

- 64-QAM constellation (Q = 64).
- Maximum number of 4 retransmissions (M = 4).
- Assume the relay R and destination S₂ have the same Gaussian noise power σ².
- Use a robust tabu search algorithm¹ to solve each QAP numerically.
- Compare 3 MoDiv schemes:
 - 1. No modulation diversity (NM).
 - 2. A heuristic CoRe scheme for HSPA²(CR).
 - 3. QAP-based solution (QAP).

¹E. Taillard, "Robust taboo search for the quadratic assignment problem," Parallel Computing, vol.17, no.4, pp.443-455, 1991.

² "Enhanced HARQ Method with Signal Constellation Rearrangement," in 3rd Generation Partnership Project (3GPP), Technical Specification TSGR1#19(01)0237, Mar. 2001.

- 64-QAM constellation (Q = 64).
- Maximum number of 4 retransmissions (M = 4).
- Assume the relay R and destination S₂ have the same Gaussian noise power σ².
- ► Use a robust tabu search algorithm¹to solve each QAP numerically.
- Compare 3 MoDiv schemes:
 - 1. No modulation diversity (NM).
 - A heuristic CoRe scheme for HSPA²(CR).
 - 3. QAP-based solution (QAP).

¹E. Taillard, "Robust taboo search for the quadratic assignment problem," Parallel Computing, vol.17, no.4, pp.443-455, 1991.

² "Enhanced HARQ Method with Signal Constellation Rearrangement," in 3rd Generation Partnership Project (3GPP), Technical Specification TSGR1#19(01)0237, Mar. 2001.

- 64-QAM constellation (Q = 64).
- Maximum number of 4 retransmissions (M = 4).
- Assume the relay R and destination S₂ have the same Gaussian noise power σ².
- ► Use a robust tabu search algorithm¹to solve each QAP numerically.
- Compare 3 MoDiv schemes:
 - 1. No modulation diversity (NM).
 - 2. A heuristic CoRe scheme for HSPA²(CR).
 - 3. QAP-based solution (QAP).

² "Enhanced HARQ Method with Signal Constellation Rearrangement," in 3rd Generation Partnership Project (3GPP), Technical Specification TSGR1#19(01)0237, Mar. 2001.

¹E. Taillard, "Robust taboo search for the quadratic assignment problem," Parallel Computing, vol.17, no.4, pp.443-455, 1991.

- 64-QAM constellation (Q = 64).
- Maximum number of 4 retransmissions (M = 4).
- Assume the relay R and destination S₂ have the same Gaussian noise power σ².
- ► Use a robust tabu search algorithm¹to solve each QAP numerically.
- Compare 3 MoDiv schemes:
 - 1. No modulation diversity (NM).
 - A heuristic CoRe scheme for HSPA²(CR).
 - 3. QAP-based solution (QAP).

² "Enhanced HARQ Method with Signal Constellation Rearrangement," in 3rd Generation Partnership Project (3GPP), Technical Specification TSGR1#19(01)0237, Mar. 2001.

¹E. Taillard, "Robust taboo search for the quadratic assignment problem," Parallel Computing, vol.17, no.4, pp.443-455, 1991.

- 64-QAM constellation (Q = 64).
- Maximum number of 4 retransmissions (M = 4).
- Assume the relay R and destination S₂ have the same Gaussian noise power σ².
- ► Use a robust tabu search algorithm¹to solve each QAP numerically.
- Compare 3 MoDiv schemes:
 - 1. No modulation diversity (NM).
 - 2. A heuristic CoRe scheme for HSPA²(CR).

3. QAP-based solution (QAP).

² "Enhanced HARQ Method with Signal Constellation Rearrangement," in 3rd Generation Partnership Project (3GPP), Technical Specification TSGR1#19(01)0237, Mar. 2001.

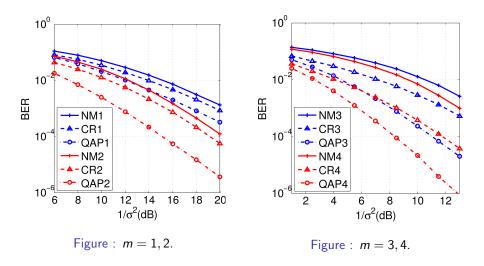
¹E. Taillard, "Robust taboo search for the quadratic assignment problem," Parallel Computing, vol.17, no.4, pp.443-455, 1991.

- 64-QAM constellation (Q = 64).
- Maximum number of 4 retransmissions (M = 4).
- Assume the relay R and destination S₂ have the same Gaussian noise power σ².
- ► Use a robust tabu search algorithm¹to solve each QAP numerically.
- Compare 3 MoDiv schemes:
 - 1. No modulation diversity (NM).
 - 2. A heuristic CoRe scheme for HSPA²(CR).
 - 3. QAP-based solution (QAP).

¹E. Taillard, "Robust taboo search for the quadratic assignment problem," Parallel Computing, vol.17, no.4, pp.443-455, 1991.

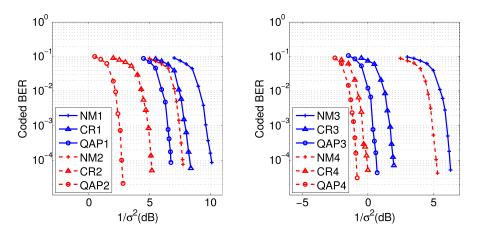
² "Enhanced HARQ Method with Signal Constellation Rearrangement," in 3rd Generation Partnership Project (3GPP), Technical Specification TSGR1#19(01)0237, Mar. 2001.

Numerical Results: Uncoded BER



Numerical Results: Coded BER

Add a Forward Error Correction (FEC) code so that the coded BER drop rapidly as the noise power is below a certain level. The result is termed "waterfall curve" which is commonly used to highlight the performance gain in dB.



Numerical Results: Average Throughput

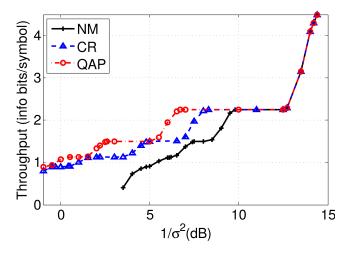


Figure : Throughput comparison.

KSJ MATHEMATICS AND STATISTICS 24 / 41

Outline

Application of QAP in Modulation Diversity (MoDiv) Design

Background MoDiv Design for Two-Way Amplify-and-Forward Relay HARQ Channel MoDiv Design for Multiple-Input and Multiple-Output HARQ Channel Conclusion Multiple-Input and Multiple-Output (MIMO) Channel

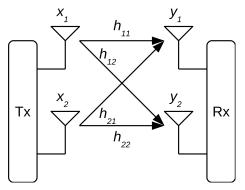


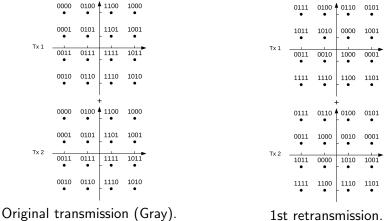
Figure : A 2 × 2 MIMO channel, $y_1 = h_{11}x_1 + h_{21}x_2 + n_1$, $y_2 = h_{12}x_1 + h_{22}x_2 + n_2$, or simply $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$.

- An essential element in most modern wireless communication standards: Wi-Fi, HSPA+, LTE, WiMAX, etc.
- How do we generalize the idea of MoDiv design for MIMO channel?

An Example of CoRe for MIMO

- A 1×2 MIMO channel: $\mathbf{H} = [1, 1]$ (simple addition).
- Different mapping across the 2 transmitting antennas:

• Effective constellation seen by the receiver: $\psi_e = (\psi)_1 + (\psi)_2$.



ESI

QAP in Modulation Diversity Design

MATHEMATICS AND STATISTICS

An Example of CoRe for MIMO

- A 1×2 MIMO channel: $\mathbf{H} = [1, 1]$ (simple addition).
- Different mapping across the 2 transmitting antennas:
- Effective constellation seen by the receiver: $\psi_e = (\psi)_1 + (\psi)_2$.

Effective constellation mapping of the original transmission.

Effective constellation mapping of the 1st retransmission.

For HARQ-CC, this CoRe scheme of the 1st retransmission outperforms the repeated use of the same Gray mapping across the 2 antennas!

MoDiv Design for MIMO Channel

MIMO channel model: correlated Rician fading channel

$$\mathbf{H}^{(m)} = \sqrt{\frac{K}{K+1}} \underbrace{\mathbf{H}_{0}}_{\text{"Mean"}} + \sqrt{\frac{1}{K+1}} \mathbf{R}^{1/2} \underbrace{\mathbf{H}_{w}^{(m)}}_{\text{"Variation"}} \mathbf{T}^{1/2}$$

 \mathcal{K} : Rician factor, \mathbf{R}, \mathbf{T} : correlation matrix or the receiver and transmitter antennas.

- ► HARQ protocol: HARQ-CC
- Design Criterion: BER upperbound based on PEP, successive optimization.

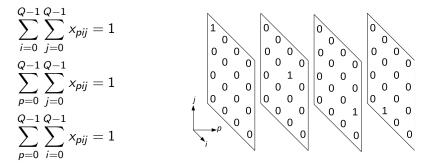
For now we consider the case of $N_T = 2$ (2 transmitting antennas).

Representation of CoRe

Representing the 2-D vector mapping function $\psi_m[\cdot]$ with Q^3 binary variables:

$$\mathbf{x}_{pij}^{(m)} = \begin{cases} 1 & \text{if } \boldsymbol{\psi}_m[p] = (\psi_0[i], \psi_0[j])^T \\ 0 & \text{otherwise.} \end{cases} \quad p, i, j = 0, \dots, Q-1$$

 ψ_0 represents Gray-mapping for the original transmission (fixed). Constraints: $\psi_m[\cdot]$ as a permutation of $0, \ldots, Q-1$



QAP in Modulation Diversity Design

KSJ MATHEMATICS AND STATISTICS 29 / 41

A Successive Q3AP Formulation

MoDiv design via successive Q3AP

1. Set m = 1. Initialize the "distance" matrix and the approximated PEP, for p, q, i, j, k, l = 0, ..., Q - 1:

$$d_{ikjl} = \tilde{E}_0[i,k,j,l], \ \tilde{P}^{(0)}_{PEP}(q|p) = d_{pqpq}/2$$

2. Evaluate the "flow" matrix:

$$f_{pq}^{(m)} = \frac{D[p,q]}{Q\log_2 Q} \tilde{P}_{PEP}^{(m-1)}(q|p)$$

3. Solve the *m*-th Q3AP problem:

$$\min_{\{x_{pij}^{(m)}\}} \sum_{p=0}^{Q-1} \sum_{i=0}^{Q-1} \sum_{j=0}^{Q-1} \sum_{q=0}^{Q-1} \sum_{k=0}^{Q-1} \sum_{l=0}^{Q-1} f_{pq}^{(m)} d_{ikjl} x_{pij}^{(m)} x_{qkl}^{(m)}$$

A Successive Q3AP Formulation

MoDiv design via successive Q3AP

1. Set m = 1. Initialize the "distance" matrix and the approximated PEP, for p, q, i, j, k, l = 0, ..., Q - 1:

$$d_{ikjl} = ilde{E}_0[i,k,j,l], \; ilde{P}^{(0)}_{PEP}(q|p) = d_{pqpq}/2$$

2. Evaluate the "flow" matrix:

$$f_{pq}^{(m)} = rac{D[p,q]}{Q\log_2 Q} \widetilde{P}_{PEP}^{(m-1)}(q|p)$$

3. Solve the *m*-th Q3AP problem:

$$\min_{\{x_{pij}^{(m)}\}} \sum_{p=0}^{Q-1} \sum_{i=0}^{Q-1} \sum_{j=0}^{Q-1} \sum_{q=0}^{Q-1} \sum_{k=0}^{Q-1} \sum_{l=0}^{Q-1} f_{pq}^{(m)} d_{ikjl} x_{pij}^{(m)} x_{qkl}^{(m)}$$

A Successive Q3AP Formulation

MoDiv design via successive Q3AP

1. Set m = 1. Initialize the "distance" matrix and the approximated PEP, for p, q, i, j, k, l = 0, ..., Q - 1:

$$d_{ikjl} = ilde{E}_0[i,k,j,l], \; ilde{P}^{(0)}_{PEP}(q|p) = d_{pqpq}/2$$

2. Evaluate the "flow" matrix:

$$f_{pq}^{(m)} = \frac{D[p,q]}{Q\log_2 Q} \tilde{P}_{PEP}^{(m-1)}(q|p)$$

3. Solve the *m*-th Q3AP problem:

$$\min_{\{x_{pij}^{(m)}\}} \sum_{p=0}^{Q-1} \sum_{i=0}^{Q-1} \sum_{j=0}^{Q-1} \sum_{q=0}^{Q-1} \sum_{k=0}^{Q-1} \sum_{l=0}^{Q-1} f_{pq}^{(m)} d_{ikjl} x_{pij}^{(m)} x_{qkl}^{(m)}$$

A Successive Q3AP Formulation (Continued)

MoDiv design via successive Q3AP

4. Update PEP:

$$ilde{P}_{PEP}^{(m)}(q|p) = \sum_{i=0}^{Q-1} \sum_{k=0}^{Q-1} \sum_{j=0}^{Q-1} \sum_{l=0}^{Q-1} ilde{P}_{PEP}^{(m-1)}(q|p) d_{ikjl} \hat{x}_{pij}^{(m)} \hat{x}_{qkl}^{(m)}$$

where $\hat{x}_{pij}^{(m)}$ is the solution from Step 3. 5. Increase *m* by 1, return to Step 2 if $m \leq M$. A Successive Q3AP Formulation (Continued)

MoDiv design via successive Q3AP

4. Update PEP:

$$ilde{P}_{PEP}^{(m)}(q|p) = \sum_{i=0}^{Q-1} \sum_{k=0}^{Q-1} \sum_{j=0}^{Q-1} \sum_{l=0}^{Q-1} ilde{P}_{PEP}^{(m-1)}(q|p) d_{ikjl} \hat{x}_{pij}^{(m)} \hat{x}_{qkl}^{(m)}$$

where $\hat{x}_{pij}^{(m)}$ is the solution from Step 3.

5. Increase *m* by 1, return to Step 2 if $m \leq M$.

Approximation of the Pairwise Error Probability

$$\begin{split} \tilde{E}_{0}[i,k,j,l] &= \mathbb{E}\left[\exp\left(-\frac{\|\mathbf{H}\mathbf{e}_{0}[i,k,j,l]\|^{2}}{4\sigma^{2}}\right)\right] \\ &= \frac{(4\sigma^{2})^{N_{R}}}{\det(\mathbf{S})}\exp\left(-\mu^{H}\mathbf{S}^{-1}\mu\right) \\ \mu &= \sqrt{\frac{K}{K+1}}\mathbf{H}_{0}\mathbf{e}[i,k,j,l], \\ \mathbf{S} &= 4\sigma^{2}\mathbf{I} + \frac{1}{K+1}(\mathbf{e}^{H}[i,k,j,l]\mathbf{T}\mathbf{e}[i,k,j,l])\mathbf{R} \end{split}$$

• σ^2 : the noise power at each receiver antenna.

•
$$\mathbf{e}[i, k, j, l] = (\psi_0[i] - \psi_0[k], \psi_0[j] - \psi_0[l])^T$$

QAP in Modulation Diversity Design

Comments

- ► The Q⁴ "distance" matrix has Q⁴ elements. However, for Q-QAM constellation, it only has O(Q²) unique values, can be computed more efficiently.
- ▶ When $N_T > 2$, the MoDiv design can be formulated into a quadratic $(N_T + 1)$ -dimensional problem, with Q-by-Q "flow" matrix and Q^{2N_T} "distance" matrix, which might be too complex to solve. However, one can always apply a N_T -by-2 linear precoding matrix to reduce the channel into a N_R -by-2 channel to partly explore modulation diversity.

• 64-QAM constellation (Q = 64).

- Maximum number of 4 retransmissions (M = 4).
- Correlated Rician-fading channels, $H_0 = [1, 1]$, correlation factor $\rho = 0.7$.
- Use a modified iterative local search algorithm³ to solve each Q3AP numerically.
- Compare 3 MoDiv schemes:
 - No modulation diversity with maximum SNR beam-forming (NM).
 A heuristic CoRe scheme for HSPA with maximum SNR beam-forming (CR).
 G3AP-based solution (Q3AP).

³T. Stützle, and D. Marco, "Local search and metaheuristics for the quadratic assignment problem," Technical Report AIDA-01-01, Intellectics Group, Darmstadt University of Technology, Germany, 2001.

QAP in Modulation Diversity Design

• 64-QAM constellation (Q = 64).

- Maximum number of 4 retransmissions (M = 4).
- Correlated Rician-fading channels, $H_0 = [1, 1]$, correlation factor $\rho = 0.7$.
- Use a modified iterative local search algorithm³ to solve each Q3AP numerically.
- Compare 3 MoDiv schemes:
 - No modulation diversity with maximum SNR beam-forming (NM).
 A heuristic Colle scheme for HSPA with maximum SNR beam-forming (CR).
 Q3AP-based solution (Q3AP).

³T. Stützle, and D. Marco, "Local search and metaheuristics for the quadratic assignment problem," Technical Report AIDA-01-01, Intellectics Group, Darmstadt University of Technology, Germany, 2001.

QAP in Modulation Diversity Design

- 64-QAM constellation (Q = 64).
- Maximum number of 4 retransmissions (M = 4).
- ► Correlated Rician-fading channels, $\mathbf{H}_0 = [1, 1]$, correlation factor $\rho = 0.7$.
- Use a modified iterative local search algorithm³ to solve each Q3AP numerically.
- Compare 3 MoDiv schemes:
 - 3. No modulation diversity with maximum SNR beam-forming (NM).
 3. A heuristic Colle scheme for HSPA with maximum SNR beam-forming (CR).
 3. Q3AP-based solution (Q3AP).

³T. Stützle, and D. Marco, "Local search and metaheuristics for the quadratic assignment problem," Technical Report AIDA-01-01, Intellectics Group, Darmstadt University of Technology, Germany, 2001.

- 64-QAM constellation (Q = 64).
- Maximum number of 4 retransmissions (M = 4).
- ► Correlated Rician-fading channels, $\mathbf{H}_0 = [1, 1]$, correlation factor $\rho = 0.7$.
- Use a modified iterative local search algorithm³ to solve each Q3AP numerically.
- Compare 3 MoDiv schemes:

 No modulation diversity with maximum SNR beam-forming (NM).
 A heuristic CoRe scheme for HSPA with maximum SNR beam-forming (CR).
 Q3AP-based solution (Q3AP).

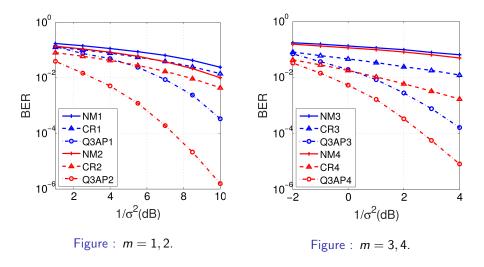
- 64-QAM constellation (Q = 64).
- Maximum number of 4 retransmissions (M = 4).
- ► Correlated Rician-fading channels, $\mathbf{H}_0 = [1, 1]$, correlation factor $\rho = 0.7$.
- Use a modified iterative local search algorithm³ to solve each Q3AP numerically.
- Compare 3 MoDiv schemes:
 - 1. No modulation diversity with maximum SNR beam-forming (NM).
 - 2. A heuristic CoRe scheme for HSPA with maximum SNR beam-forming (CR).
 - 3. Q3AP-based solution (Q3AP).

- 64-QAM constellation (Q = 64).
- Maximum number of 4 retransmissions (M = 4).
- ► Correlated Rician-fading channels, $\mathbf{H}_0 = [1, 1]$, correlation factor $\rho = 0.7$.
- Use a modified iterative local search algorithm³ to solve each Q3AP numerically.
- Compare 3 MoDiv schemes:
 - 1. No modulation diversity with maximum SNR beam-forming (NM).
 - 2. A heuristic CoRe scheme for HSPA with maximum SNR beam-forming (CR).
 - 3. Q3AP-based solution (Q3AP).

- 64-QAM constellation (Q = 64).
- Maximum number of 4 retransmissions (M = 4).
- ► Correlated Rician-fading channels, $\mathbf{H}_0 = [1, 1]$, correlation factor $\rho = 0.7$.
- Use a modified iterative local search algorithm³ to solve each Q3AP numerically.
- Compare 3 MoDiv schemes:
 - 1. No modulation diversity with maximum SNR beam-forming (NM).
 - 2. A heuristic CoRe scheme for HSPA with maximum SNR beam-forming (CR).
 - 3. Q3AP-based solution (Q3AP).

- 64-QAM constellation (Q = 64).
- Maximum number of 4 retransmissions (M = 4).
- ► Correlated Rician-fading channels, $\mathbf{H}_0 = [1, 1]$, correlation factor $\rho = 0.7$.
- Use a modified iterative local search algorithm³ to solve each Q3AP numerically.
- Compare 3 MoDiv schemes:
 - 1. No modulation diversity with maximum SNR beam-forming (NM).
 - 2. A heuristic CoRe scheme for HSPA with maximum SNR beam-forming (CR).
 - 3. Q3AP-based solution (Q3AP).

Numerical Results: Uncoded BER vs Noise Power



Numerical Results: Uncoded BER vs K

Larger $K \leftrightarrow$ the channel is less random.

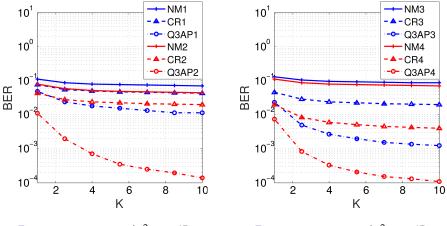
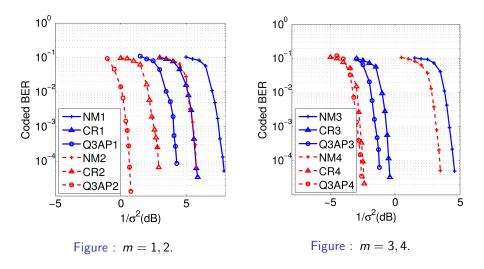


Figure : $m = 1, 2, 1/\sigma^2 = 6dB$.

Figure : $m = 3, 4, 1/\sigma^2 = 2dB$.

Numerical Results: Coded BER



ISI MATHEMATICS AND STATISTICS

Numerical Results: Average Throughput

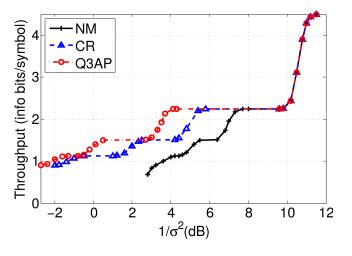


Figure : Throughput comparison.

ASJ MATHEMATICS AND STATISTICS 38 / 41

Outline

Application of QAP in Modulation Diversity (MoDiv) Design

Background MoDiv Design for Two-Way Amplify-and-Forward Relay HARQ Channel MoDiv Design for Multiple-Input and Multiple-Output HARQ Channel Conclusion

- Formulate Modulation Diversity (MoDiv) design for wireless communication system into Quadratic Assignment Problems (QAPs):
 - 1. Two-Way Relay Analog Network Coding Rayleigh-fading channel: successive Koopman-Beckmann QAP.
 - 2. Correlated Rician-fading Multiple-Input and Multiple-Output channel: successive Q3AP.
- Significant performance gain for a wide range of settings over existing heuristic MoDiv schemes.

- Formulate Modulation Diversity (MoDiv) design for wireless communication system into Quadratic Assignment Problems (QAPs):
 - 1. Two-Way Relay Analog Network Coding Rayleigh-fading channel: successive Koopman-Beckmann QAP.
 - 2. Correlated Rician-fading Multiple-Input and Multiple-Output channel: successive Q3AP.
- Significant performance gain for a wide range of settings over existing heuristic MoDiv schemes.

- Formulate Modulation Diversity (MoDiv) design for wireless communication system into Quadratic Assignment Problems (QAPs):
 - 1. Two-Way Relay Analog Network Coding Rayleigh-fading channel: successive Koopman-Beckmann QAP.
 - 2. Correlated Rician-fading Multiple-Input and Multiple-Output channel: successive Q3AP.
- Significant performance gain for a wide range of settings over existing heuristic MoDiv schemes.

- Formulate Modulation Diversity (MoDiv) design for wireless communication system into Quadratic Assignment Problems (QAPs):
 - 1. Two-Way Relay Analog Network Coding Rayleigh-fading channel: successive Koopman-Beckmann QAP.
 - 2. Correlated Rician-fading Multiple-Input and Multiple-Output channel: successive Q3AP.
- Significant performance gain for a wide range of settings over existing heuristic MoDiv schemes.

Thank you for your attention

Questions or Remarks?

slides of talk at: http://plato.asu.edu/talks/informs2015.pdf

first paper at: http://www.optimization-online.org/DB_HTML/2015/10/5181.html

QAP in Modulation Diversity Design

Hans D Mittelmann

ASI MATHEMATICS AND STATISTICS 41 / 41