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Our Instance

16-PSK digital communication retransmission protocol

• cost of assigning to strings i and p the symbols j and q in 
the first transmission and k and r in the second

• extremely dense objective: >12M coefficients

• high dynamism 3.6 x 1012

• symmetric: group of order 49.152



Parallel mode: deterministic, using up to 16 threads.	
Root relaxation solution time = 43.45 sec. (17943.71 ticks)	
!
        Nodes                                         Cuts/	
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap	
!
*     0+    0                       207392.0000        0.0000     4538  100.00%	
      0     0     9832.0000    50   207392.0000     9832.0000     4538   95.26%	
      0     0     9832.0000    50   207392.0000      Cuts: 12     5450   95.26%	
      0     0     9832.0000    55   207392.0000      Cuts: 25     5569   95.26%	
Heuristic still looking.	
      0     2     9832.0000    51   207392.0000     9832.0000     5569   95.26%	
Elapsed time = 186.17 sec. (166732.53 ticks, tree = 0.01 MB, solutions = 1)	
      1     3    10639.0000    39   207392.0000     9832.0000    11529   95.26%	
…	
…	
…	
 25953439 25481647    16202.0920    34   207392.0000    11819.7613 3.89e+08   94.30%	
 25958606 25486740        cutoff         207392.0000    11819.8664 3.89e+08   94.30%	
 25965184 25493181    27448.9838    33   207392.0000    11820.0129 3.89e+08   94.30%	
 25973355 25501284    21883.6636    33   207392.0000    11820.0279 3.89e+08   94.30%	
Elapsed time = 188682.61 sec. (70111125.75 ticks, tree = 85733.89 MB, solutions = 1)	
Nodefile size = 85605.64 MB (8364.42 MB after compression)	
 25982488 25510197    23406.9047    37   207392.0000    11820.2149 3.89e+08   94.30%	
 25992703 25520262   111140.2318    24   207392.0000    11820.4710 3.89e+08   94.30%	
 26004478 25531838    24797.8353    29   207392.0000    11820.5560 3.89e+08   94.30%	
 26013616 25540843   114000.7561    32   207392.0000    11820.8606 3.89e+08   94.30%	
 26021413 25548479    25846.1198    35   207392.0000    11821.0349 3.90e+08   94.30%	
 26023631 25550651        cutoff         207392.0000    11821.0669 3.90e+08   94.30%	
…	
…
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Extremely Challenging	


for MIP solvers
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How did we solve it?
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Lightweight MIP model

variables and	

constraints

superweak dual bound
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Cutting Planes I

computed by solving a LINEAR	

3D assignment problem

• NP-hard in theory, quite cheap in practice

• can exploit additional constraints (if available) 
both global and local
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Cutting Planes II

computed by solving a MIP

• increase consistency between pairs of artificial variables

• not significantly harder than family 1

• need to be conservative with separation



Cutting Planes II
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1

sums within orbits stay the same
aggregated variables as first level decisions

Symmetry Handling

binary variables can be partitioned into 6 orbits
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Symmetry Handling

• symmetry decomposition based on orbital shrinking

• we enumerate all possible aggregated solutions (with 
Gecode)

• for each we solve a MIP subproblem to find the best 
solution therein

only 85!

isomorphism pruning 
within sub-MIPs…	


exploit symmetry twice!!!



Aggregated Model

6 orbits ⟼ 6 y variables



symmetry decomposition

cutting planes
MIP model

Nice Interplay between techniques



Is it enough?



Is it enough?

NO!



Primal Heuristics



Primal Heuristics

• MIP solvers have lots of trouble in finding good 
solutions for assignment problems



Primal Heuristics

• MIP solvers have lots of trouble in finding good 
solutions for assignment problems

• We implemented an ILS metaheuristic from the 
literature



Primal Heuristics

• MIP solvers have lots of trouble in finding good 
solutions for assignment problems

• We implemented an ILS metaheuristic from the 
literature

• We could find the (later proven) optimal solution 
in a few minutes :-)



Primal Heuristics

• MIP solvers have lots of trouble in finding good 
solutions for assignment problems

• We implemented an ILS metaheuristic from the 
literature

• We could find the (later proven) optimal solution 
in a few minutes :-)



Branching Order



Branching Order

•Rank variables by decreasing values of Lijk



Branching Order

•Rank variables by decreasing values of Lijk

• Improves dual bound fast (higher priority 
variables are the most expensive ones)



Branching Order

•Rank variables by decreasing values of Lijk

• Improves dual bound fast (higher priority 
variables are the most expensive ones)

•Plays well with isomorphism pruning
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Parameter Tuning

• opportunistic (nondeterministic) parallel mode 
(much faster)

• separate cutting planes only if the number of 
variables fixed to 1 at the current node is in [2,12] 
and only for fractional variables

• cuts are added only if at least 10 are significantly 
violated

• expensive cuts are separated only if one of the two 
controlling variables is already fixed to 1

• used indicator constraints to speed up LPs
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Scaling

• we scaled the objective coefficients by 106 and 
rounded down, in order to improve the numerical 
properties of the model (reduced dynamism and 
increased sparsity)

• resulting LP objective values (multiplied by the same 
factor) are still valid dual bounds

• primal solutions are evaluated with the exact 
coefficients
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Computational Results

subproblems count time nodes

easy 45 2,800 950

medium 25 53,500 237,000

hard 15 400,900 2,240,000

total 85 457,200 2,477,950

less than one week on a desktop PC!
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Conclusions

•solved biggest Q3AP instance to date

•had fun :-)

•developed (extended) techniques that 
can be used for other Q3APs and 
(more importantly) QAPs and 
beyond…
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Thanks for your attention!	

!

Questions?


