Solving a Challenging Quadratic 3D Assignment Problem

Hans Mittelmann Arizona State University Domenico Salvagnin DEI - University of Padova

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ijk} = 1$$
$$\sum_{i=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$
$$\sum_{i=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ijk} = 1$$
$$\sum_{i=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$
$$\sum_{i=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ijk} = 1$$
$$\sum_{i=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$
$$\sum_{j=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ijk} = 1$$
$$\sum_{i=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$
$$\sum_{j=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ijk} = 1$$
$$\sum_{i=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$
$$\sum_{j=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

quadratic objective

 $c_{ijkpqr} x_{ijk} x_{pqr}$

 $C_{ij}kpqr$

 $C_{ij}kpqr$

16-PSK digital communication retransmission protocol

 c_{ijkpqr}

 cost of assigning to strings i and p the symbols j and q in the first transmission and k and r in the second

 $C_{ij}kpqr$

- cost of assigning to strings i and p the symbols j and q in the first transmission and k and r in the second
- extremely dense objective: >12M coefficients

 $C_{ij}kpqr$

- cost of assigning to strings i and p the symbols j and q in the first transmission and k and r in the second
- extremely dense objective: >12M coefficients
- high dynamism 3.6×10^{12}

 $C_{ij}kpqr$

- cost of assigning to strings i and p the symbols j and q in the first transmission and k and r in the second
- extremely dense objective: >12M coefficients
- high dynamism 3.6×10^{12}
- symmetric: group of order 49.152

Parallel mode: deterministic, using up to 16 threads. Root relaxation solution time = 43.45 sec. (17943.71 ticks)

Nodes					Cuts/						
No	de	Left	Objective	IInf	Best]	Integer	Best	Bound	ItCn	t	Gap
*	0+	0			20739	92.0000		0.0000	453	8 100	.00%
	0	0	9832.0000	50	20739	92.0000	983	2.0000	453	8 95	.26%
	0	0	9832.0000	50	20739	92.0000	Cu	ts: 12	545	0 95	.26%
	0	0	9832.0000	55	20739	92.0000	Cu	ts: 25	556	9 95	.26%
Heuri	stic	still l	ookina.								
	0	2	9832.0000	51	20739	92.0000	983	2.0000	556	9 95	.26%
Elaps	ed t	ime = 18	86.17 sec. (166732	.53 tic	cks.tr	ee = 0.0	1 MB.	solution	s = 1)	
•	1	3	10639.0000	39	20739	92.0000	983	2.0000	1152	9 95	.26%
•••											
•••											
•••											
2595	3439	2548164	7 16202.	0920	34	207392	.0000	11819	.7613 3.	89e+08	94.30%
2595	8606	2548674	l0 cu	toff		207392	.0000	11819	.8664 3.	89e+08	94.30%
2596	5184	2549318	81 27448.	9838	33	207392	.0000	11820	.0129 3.	89e+08	94.30%
2597	3355	2550128	21883.	6636	33	207392	.0000	11820	.0279 3.	89e+08	94.30%
Elaps	ed t	ime = 18	88682.61 sec	. (701	11125.7	75 tick	s. tree	= 8573	3.89 MB.	solut	ions = 1)
Nodef	ile	size = 8	35605.64 MB	(8364.	42 MB c	after co	ompressi	on)	,		
2598	2488	2551019	23406.	9047	37	207392	.0000	11820	.2149 3.	89e+08	94.30%
2599	2703	2552026	52 111140.	2318	24	207392	.0000	11820	.4710 3.	89e+08	94.30%
2600	4478	2553183	24797.	8353	29	207392	.0000	11820	.5560 3.	89e+08	94.30%
2601	3616	2554084	3 114000.	7561	32	207392	.0000	11820	.8606 3.	89e+08	94.30%
2602	1413	2554847	25846.	1198	35	207392	.0000	11821	.0349 3.	90e+08	94.30%
2602	3631	2555065	51 cu	toff		207392	.0000	11821	.0669 3.	90e+08	94.30%

•••

Parallel mode: deterministic, using up to 16 threads. Root relaxation solution time = 43.45 sec. (17943.71 ticks)

I. lightweight MIP model

I. lightweight MIP model

2. cutting planes

I. lightweight MIP model

2. cutting planes

3. symmetry handling

How did we solve it?

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} w_{ijk}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ijk} = 1$$

$$\sum_{i=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

$$\sum_{j=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

$$w_{ijk} \ge \sum_{p=1}^{n} \sum_{q=1}^{n} \sum_{r=1}^{n} c_{ijkpqr} x_{pqr} - M(1 - x_{ijk})$$

$$x_{ijk} \in \{0, 1\}$$

$$w_{ijk} \ge 0$$

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} w_{ijk}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ijk} = 1$$

$$\sum_{i=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

$$\sum_{j=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

$$w_{ijk} \ge \sum_{p=1}^{n} \sum_{q=1}^{n} \sum_{r=1}^{n} c_{ijkpqr} x_{pqr} - M(1 - x_{ijk})$$

$$x_{ijk} \in \{0, 1\}$$

$$w_{ijk} \ge 0$$

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} w_{ijk}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ijk} = 1$$

$$\sum_{i=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

$$\sum_{j=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

$$w_{ijk} \ge \sum_{p=1}^{n} \sum_{q=1}^{n} \sum_{r=1}^{n} c_{ijkpqr} x_{pqr} - M(1 - x_{ijk})$$

$$x_{ijk} \in \{0, 1\}$$

$$w_{ijk} \ge 0$$

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} w_{ijk}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ijk} = 1$$

$$\sum_{i=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

$$\sum_{j=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

$$w_{ijk} \ge \sum_{p=1}^{n} \sum_{q=1}^{n} \sum_{r=1}^{n} c_{ijkpqr} x_{pqr} - M(1 - x_{ijk})$$

$$x_{ijk} \in \{0, 1\}$$

$$w_{ijk} \ge 0$$

variables and

constraints

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} w_{ijk}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ijk} = 1$$

$$\sum_{i=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

$$\sum_{j=1}^{n} \sum_{k=1}^{n} x_{ijk} = 1$$

$$w_{ijk} \ge \sum_{p=1}^{n} \sum_{q=1}^{n} \sum_{r=1}^{n} c_{ijkpqr} x_{pqr} - M(1 - x_{ijk})$$

$$x_{ijk} \in \{0, 1\}$$

$$w_{ijk} \ge 0$$

 $w_{ijk} \ge L_{ijk} x_{ijk}$

 $w_{ijk} \ge L_{ijk} x_{ijk}$

computed by solving a LINEAR 3D assignment problem

 $w_{ijk} \ge L_{ijk} x_{ijk}$

computed by solving a LINEAR 3D assignment problem

• NP-hard in theory, quite cheap in practice

 $w_{ijk} \ge L_{ijk} x_{ijk}$

computed by solving a LINEAR 3D assignment problem

- NP-hard in theory, quite cheap in practice
- can exploit additional constraints (if available)
 both global and local

$$L_{ijk} = \begin{cases} Cutting Planes I \\ \min \sum_{p=1}^{n} \sum_{q=1}^{n} \sum_{r=1}^{n} c_{ijkpqr} x_{pqr} \\ \sum_{p=1}^{n} \sum_{q=1}^{n} x_{pqr} = 1 \quad \forall r \in \{1, \dots, n\} \\ \sum_{p=1}^{n} \sum_{r=1}^{n} x_{pqr} = 1 \quad \forall q \in \{1, \dots, n\} \\ \sum_{q=1}^{n} \sum_{r=1}^{n} x_{pqr} = 1 \quad \forall p \in \{1, \dots, n\} \\ x_{ijk} = 1 \\ x_{pqr} \in \{0, 1\} \end{cases}$$

$w_{ijk} + w_{pqr} \ge T_{ijkpqr}(x_{ijk} + x_{pqr} - 1)$

 $w_{ijk} + w_{pqr} \ge T_{ijkpqr} (x_{ijk} + x_{pqr} - 1)$

computed by solving a MIP

$$w_{ijk} + w_{pqr} \ge T_{ijkpqr} (x_{ijk} + x_{pqr} - 1)$$

computed by solving a MIP

• increase consistency between pairs of artificial variables

$$w_{ijk} + w_{pqr} \ge T_{ijkpqr} (x_{ijk} + x_{pqr} - 1)$$

computed by solving a MIP

- increase consistency between pairs of artificial variables
- not significantly harder than family I

$$w_{ijk} + w_{pqr} \ge T_{ijkpqr} (x_{ijk} + x_{pqr} - 1)$$

computed by solving a MIP

- increase consistency between pairs of artificial variables
- not significantly harder than family I
- need to be conservative with separation

$$\min \quad w_{ijk} + w_{pqr}$$

$$\sum_{s=1}^{n} \sum_{t=1}^{n} x_{pqr} = 1 \quad \forall u \in \{1, \dots, n\}$$

$$\sum_{s=1}^{n} \sum_{u=1}^{n} x_{pqr} = 1 \quad \forall t \in \{1, \dots, n\}$$

$$\sum_{t=1}^{n} \sum_{u=1}^{n} x_{pqr} = 1 \quad \forall s \in \{1, \dots, n\}$$

$$w_{ijk} \ge \sum_{s=1}^{n} \sum_{t=1}^{n} \sum_{u=1}^{n} c_{ijkstu} x_{stu}$$

$$w_{pqr} \ge \sum_{s=1}^{n} \sum_{t=1}^{n} \sum_{u=1}^{n} c_{pqrstu} x_{stu}$$

$$x_{ijk} = 1$$

$$x_{pqr} = 1$$

$$x_{stu} \in \{0, 1\}$$

 $T_{ijkpqr} =$

Symmetry Handling

binary variables can be partitioned into 6 orbits

binary variables can be partitioned into 6 orbits

binary variables can be partitioned into 6 orbits

sums within orbits stay the same

binary variables can be partitioned into 6 orbits

sums within orbits stay the same aggregated variables as first level decisions

symmetry decomposition based on orbital shrinking

- symmetry decomposition based on orbital shrinking
- we enumerate all possible aggregated solutions (with Gecode)

- symmetry decomposition based on orbital shrinking
- we enumerate all possible aggregated solutions (with Gecode) only 85!

- symmetry decomposition based on orbital shrinking
- we enumerate all possible aggregated solutions (with Gecode) only 85!
- for each we solve a MIP subproblem to find the best solution therein

- symmetry decomposition based on orbital shrinking
- we enumerate all possible aggregated solutions (with Gecode) only 85!
- for each we solve a MIP subproblem to find the best solution therein

isomorphism pruning within sub-MIPs... exploit symmetry twice!!!

Aggregated Model

$$\begin{cases} y_0 + y_1 + y_2 + y_3 + y_4 + y_5 = 16 \\ y_1 + 2y_3 + y_4 = 16 \\ y_2 + y_4 + 2y_5 = 8 \\ 2y_0 + y_1 + y_2 = 8 \\ y_i \in \{0, \dots, |O_i| - 1\} \quad \forall i \in \{0, \dots, 5\} \end{cases}$$

6 orbits \mapsto 6 y variables

Nice Interplay between techniques

symmetry decomposition

MIP model

cutting planes

Is it enough?

Is it enough? NO!

• MIP solvers have lots of trouble in finding good solutions for assignment problems

- MIP solvers have lots of trouble in finding good solutions for assignment problems
- We implemented an ILS metaheuristic from the literature

- MIP solvers have lots of trouble in finding good solutions for assignment problems
- We implemented an ILS metaheuristic from the literature
- We could find the (later proven) optimal solution in a few minutes :-)

- MIP solvers have lots of trouble in finding good solutions for assignment problems
- We implemented an ILS metaheuristic from the literature
- We could find the (later proven) optimal solution in a few minutes :-)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 6 5 7 8 10 9 11 12 13 14 15 6 14 2 10 8 12 0 4 11 15 3 7 5 13 1 9

Rank variables by decreasing values of Lijk

- Rank variables by decreasing values of Lijk
- Improves dual bound fast (higher priority variables are the most expensive ones)

- Rank variables by decreasing values of Lijk
- Improves dual bound fast (higher priority variables are the most expensive ones)
- Plays well with isomorphism pruning

 opportunistic (nondeterministic) parallel mode (much faster)

- opportunistic (nondeterministic) parallel mode (much faster)
- separate cutting planes only if the number of variables fixed to 1 at the current node is in [2,12] and only for fractional variables

- opportunistic (nondeterministic) parallel mode (much faster)
- separate cutting planes only if the number of variables fixed to 1 at the current node is in [2,12] and only for fractional variables
- cuts are added only if at least 10 are significantly violated

- opportunistic (nondeterministic) parallel mode (much faster)
- separate cutting planes only if the number of variables fixed to 1 at the current node is in [2,12] and only for fractional variables
- cuts are added only if at least 10 are significantly violated
- expensive cuts are separated only if one of the two controlling variables is already fixed to 1

- opportunistic (nondeterministic) parallel mode (much faster)
- separate cutting planes only if the number of variables fixed to 1 at the current node is in [2,12] and only for fractional variables
- cuts are added only if at least 10 are significantly violated
- expensive cuts are separated only if one of the two controlling variables is already fixed to 1
- used indicator constraints to speed up LPs

 we scaled the objective coefficients by 10⁶ and rounded down, in order to improve the numerical properties of the model (reduced dynamism and increased sparsity)

- we scaled the objective coefficients by 10⁶ and rounded down, in order to improve the numerical properties of the model (reduced dynamism and increased sparsity)
- resulting LP objective values (multiplied by the same factor) are still valid dual bounds

- we scaled the objective coefficients by 10⁶ and rounded down, in order to improve the numerical properties of the model (reduced dynamism and increased sparsity)
- resulting LP objective values (multiplied by the same factor) are still valid dual bounds
- primal solutions are evaluated with the exact coefficients

subproblems	count	time	nodes
easy	45	2,800	950

subproblems	count	time	nodes
easy	45	2,800	950
medium	25	53,500	237,000

subproblems	count	time	nodes
easy	45	2,800	950
medium	25	53,500	237,000
hard	15	400,900	2,240,000
Computational Results

subproblems	count	time	nodes
easy	45	2,800	950
medium	25	53,500	237,000
hard	15	400,900	2,240,000
total	85	457,200	2,477,950

Computational Results

subproblems	count	time	nodes
easy	45	2,800	950
medium	25	53,500	237,000
hard	15	400,900	2,240,000
total	85	457,200	2,477,950

less than one week on a desktop PC!

solved biggest Q3AP instance to date

solved biggest Q3AP instance to date

• had fun :-)

solved biggest Q3AP instance to date

• had fun :-)

 developed (extended) techniques that can be used for other Q3APs and (more importantly) QAPs and beyond...

Selected Literature

- Pierskalla: The multi-dimensional assignment problem. Operations Research 16, 422–431 (1968)
- Hahn, Kim, Stützle, Kanthak, Hightower, Samra, Ding, Guignard: The quadratic three-dimensional assignment problem: Exact and approximate solution methods. EJOR 184, 416–428 (2008)
- Fischetti, Monaci, Salvagnin: *Three ideas for the quadratic assignment problem*. Operations Research 60(4), 954–964 (2012)
- Stützle: Iterated local search for the quadratic assignment problem. EJOR 174, 1519–1539 (2006)
- Wu, Mittelmann, Wang, Wang: On computation of performance bounds of optimal index assignment. IEEE Transactions on Communications 59, 3229–3233 (2011)
- Margot: Symmetry in Integer Linear Programming. 50 Years of Integer Programming 1958-2008, 647–686 (2010)

Thanks for your attention!

Questions?