## Benchmarking Optimization Software a (Hi)Story

### Hans D Mittelmann

School of Mathematical and Statistical Sciences Arizona State University

> People's Republic of China April 2019

Benchmarking Optimization Software - a (Hi)Story Hans D Mittelmann KSI MATHEMATICS AND STATISTICS 1 / 60

## Outline

### Background

Our Service and the Rationale for Benchmarking

### The History of our Benchmarking

Very Early History [1997 - 2002] Early History [2003 - 2009] Intermediate History [2010 - 2017] Latest (Hi)Story [2018 - 2019]

### The Situation Now and in the Future What did we learn? What will we do? What are the others doing?

## Outline

### Background Our Service and the Rationale for Benchmarking

### The History of our Benchmarking

Very Early History [1997 - 2002] Early History [2003 - 2009] Intermediate History [2010 - 2017] Latest (Hi)Story [2018 - 2019]

The Situation Now and in the Future What did we learn? What will we do? What are the others doing?

## Our Service and the Rationale for Benchmarking

our "community service, part I"

- about 1996 Decision Tree started (with Peter Spellucci)
- soon after Benchmarks added
- first no commercial software, later selected codes
- extensive, very frequently updated
- lead to more transparency and competition
- both open source and commercial developers use benchmarks for advertising

### DECISION TREE FOR OPTIMIZATION SOFTWARE

Welcome! This site aims at helping you identify ready to use solutions for your optimization problem, or at least to find some way to bui solution using work done by others. If you know of useful sources not listed here, please let us know. If something is found to be erroneous us know, too. Where possible, public domain software is listed here.

In any case, observe the expressed or implied LICENSE conditions 1 In most cases, these accompany the source code. As a rule, most cod for research. This means free for academic research and teaching or for trying whether it serves your needs. Commercial uses (either d indirect) require licensing, as a rule.

We do not aim at giving an overview over existing commercial products and recommend one of the other guides for that. We have struct information in the way you can see on the left. Clicking on the corresponding part takes you there. The contents are as follows:

| Problem & Software: | software sorted by problem to be solved                                                                             |
|---------------------|---------------------------------------------------------------------------------------------------------------------|
| Benchmarks:         | collection of testresults and performance tests, made by us or others                                               |
| Testcases:          | example files ready to use with existing software, in different formats                                             |
| Books & Tutorials:  | a short list of introductory texts, some online                                                                     |
| ■ <u>Tools:</u>     | software which helps formulating an optimization problem or simplifyin solution                                     |
| WebSubmission:      | some software can be used directly via the net thanks to implementors w their computing facilities available to you |
| Other sources:      | for more information provided by others                                                                             |

| Hans D. Mittelmann,      |
|--------------------------|
| School of Math & Stats   |
| Arizona State University |
| mittelmann@asu.edu       |

#### DECISION TREE FOR OPTIMIZATION SOFTWARE

#### BENCHMARKS FOR OPTIMIZATION SOFTWARE

By Hans Mittelmann (mittelmann at asu.edu)

#### Note that on top of the benchmarks a link to logfiles is given!

#### NOTE ALSO THAT WE DO NOT USE PERFORMANCE PROFILES. SEE THIS PAPER

WE USE INSTEAD THE SHIFTED GEOMETRIC MEAN

#### COMBINATORIAL OPTIMIZATION

Concorde-TSP with different LP solvers (12-20-2017)

#### LINEAR PROGRAMMING

Benchmark of Simplex LP solvers (10-17-2018)

Benchmark of commercial LP solvers (10-17-2018)

Parallel Barrier Solvers on Large LP/QP problems (10-17-2018)

C Large Network-LP Benchmark (commercial vs free) (10-17-2018)

#### MIXED INTEGER LINEAR PROGRAMMING

MILP Benchmark - MIPLIB2010 (10-21-2018)

MILP cases that are slightly pathological (10-30-2018)

#### Feasibility Benchmark (11-1-2018) (MIPLIB2010)

PInfeasibility Detection for MILP Problems (11-1-2018)

#### SEMIDEFINITE/SQL PROGRAMMING

SQL problems from the 7th DIMACS Challenge (8-8-2002)

Several SDP codes on sparse and other SDP problems (10-25-2018)

P Infeasible SDP Benchmark (5-9-2018)

Large SOCP Benchmark (10-17-2018)

MISOCP Benchmark (10-17-2018)

#### NONLINEAR PROGRAMMING

AMPL-NLP Benchmark (10-30-2018)

#### MIXED INTEGER QPS AND QCPS

Non-commercial convex QP Benchmark (11-16-2018)

Binary QPLIB Benchmark (10-30-2018)

C QPLIB-QCQP Benchmark (7-27-2018)

Convex Discrete QPLIB Benchmark (10-30-2018)

#### MIXED INTEGER NONLINEAR PROGRAMMING

MINLP Benchmark (6-14-2018)

#### PROBLEMS WITH EQUILIBRIUM CONSTRAINTS

MPEC Benchmark (4-17-2018)

# Our Service and the Rationale for Benchmarking

- our "community service, part II"
  - after benchmarks, NEOS solvers were added
  - NEOS (network-enabled optimization solver) provides large number of interactively usable optimization programs
  - about 1/3 run on our computers, NEOS only gateway
  - needs to be demonstrated to give impression
  - additional archives developed over time: software, test problems
  - both service components benefit (our) research and teaching



(https://neos-server.org/neos)

### NEOS Server: State-of-the-Art Solvers for Numerical Optimization

The NEOS Server is a free intermet-based service for solving numerical optimization problems. Hosted by the Wisconsin Institute for Discovery at the University of Wisconsin in Madison (http://www.discovery.wisc.edu), the NEOS Server provides access to more than 60 state-of-the-art solvers in more than a dozen optimization categories. Solvers hosted by the University of Wisconsin in Madison run on distributed high-performance machines enabled by the HTCondor software (http://research.cs.wisc.edu/htcondor/); remote solvers run on machines at Arizona State University (http://www.au.edu), the University of Klagenfurt (http://www.uni ku.ac.at/english) in Austria, and the University of Mino (http://www.uninho.pt/enj in Portugal.

The **NEOS Guide** (https://neos-guide.org) website complements the NEOS Server, showcasing optimization case studies (https://neos-guide.org/Case-Studies), presenting optimization information and resources (https://neosguide.org/Optimization-Guide), and providing background information (https://neos-guide.org/NEOS-Server) on the NEOS Server.

### NEOS Server (https://neosserver.org/neos/solvers/index.html)

- · Submit a job to NEOS (https://neos-server.org/neos/solvers/index.html)
- · View Job Queue and Job Results (https://neos-server.org/neos/admin.html)
- · User's Guide to the NEOS Server (http://neos-guide.org/content/users-guide)
- NEOS Server FAQ (http://neos-guide.org/content/FAQ)
- NEOS Support (http://neos-guide.org/content/contact-us)

### **DECISION TREE FOR OPTIMIZATION SOFTWARE**

#### WEB-SUBMISSION

Thanks to the generosity of their providers at some sites you can try optimization software directly without any need to install it yourself.



VARIOUS SOLVERS AND SUBMISSION FORMS

The following are NEOS solvers we have installed

BNBS, BPMPD, BPMPD-AMPL, Concorde, CONDOR, CSDP, DDSIP, FEASPUMP, FEASPUMP-AMPL, ICOS, MOSEK, NSIPS, PENBMI, PROXY, PENSDP, QSOPT EX, SCIP-G, SCIP-L, SCIP-MPL, SCIPSDP, SD, SDPA, SDPLR, SDPT3, SeDuMi, SoPlex80bit

|           | interactive use of methods for numerical mathematics and optimization              |
|-----------|------------------------------------------------------------------------------------|
| C TryAMPL | AMPL student solver (max 300 variables, max 300 constraints, 10 different solvers) |

## Our Service and the Rationale for Benchmarking

The Rationale for Benchmarking

- Optimization is ubiquitous
- Most number-crunching computing is done in optimization
- While mathematically most optimization is not hard, writing efficient and robust programs is
- Users of optimization are well advised to try not one but several programs on their problems
- Even some powerful commercial software is available for use: NEOS (everyone), source/binaries (certain groups)

## Outline

### Background Our Service and the Rationale for Benchmarking

### The History of our Benchmarking Very Early History [1997 - 2002]

Early History [2003 - 2009] Intermediate History [2010 - 2017] Latest (Hi)Story [2018 - 2019]

The Situation Now and in the Future What did we learn? What will we do? What are the others doing?

## From the Beginning to about 2002

Some leftover files

http://plato.asu.edu/ftp/older\_benchmarks/

### A Selection of Older Benchmarks

| Large-Scale Constrained NLP Benchmark        | 1  | 0ct | 1998 |
|----------------------------------------------|----|-----|------|
| Separable QP Benchmark                       | 9  | Nov | 1998 |
| Large-Scale Bound-Constrained Benchmark      | 20 | Aug | 1999 |
| <u>Random-QP Benchmark (convex case)</u>     | 21 | May | 2000 |
| Benchmark of some PD interior point solvers  | 30 | Jan | 2001 |
| Indefinite QP Benchmark                      | 13 | Jun | 2003 |
| AMPL-QCQP Benchmark                          | 14 | Jun | 2003 |
| <u>Large-scale nonlinear system bechmark</u> | 15 | Jun | 2003 |
| Large-Scale Geometric Programming Benchmark  | 16 | Jun | 2003 |
| <u>Nonsmooth NLP Benchmark</u>               | 16 | Jun | 2003 |
| Benchmark page from 2002                     | 12 | Nov | 2002 |

## Snapshot of 2002 Benchmark page

How extensive it is

1/23/2019 Benchmarks to Optimization Software

 Problems/
 Benchmarks Testcases
 Books/ Tutorials
 Tools
 Websubmission
 Other Software

#### **Benchmarks for Optimization Software**

by Hans Mittelmann (mittelmann@asu.edu)

#### Category I: Several codes, one computer

#### LINEAR PROGRAMMING

- Benchmark of commercial LP solvers (9-16-2002)(previous)
- Benchmark of interior point LP solvers and Soplex (2-1-2002)
- Benchmark of some simplex-based LP solvers (9-18-2002)
- Supplementary Concorde TSP Benchmarks (3-20-2000)

#### MIXED INTEGER LINEAR PROGRAMMING

- MILP Benchmark commercial codes (10-11-2002)( previous)
- MILP Benchmark free codes (3-30-2002)

#### QUADRATIC PROGRAMMING

- · Benchmark of commercial and other OP solvers (11-5-2002) (previous)
- Indefinite-QP Benchmark (10-24-2002)

MIXED INTEGER NONLINEAR PROGRAMMING

- MIQP Benchmark (10-18-2002)
- <u>Sample MINLP Benchmark (11-7-2002)</u>

QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMMING

<u>AMPL-QCQP Benchmark (10-20-2002</u>)

#### SEMIDEFINITE/SQL PROGRAMMING

- Several SDP codes on problems from SDPLIB (5-30-2002)
- SQL problems from the 7th DIMACS Challenge (8-8-2002)
- Newer SDP/SOCP-codes on the 7th DIMACS Challenge problems(10-25-2002)
- Several SDP codes on sparse SDP problems (11-12-2002)

## Snapshot of 2002 Benchmark page

### How extensive it is

1/23/2019

Benchmarks for Optimization Software

LARGE-SCALE NONLINEAR SYSTEM BENCHMARK

Large-scale nonlinear system benchmark (8-24-2002) (LANCELOT, LOQO, KNITRO)

#### GEOMETRIC PROGRAMMING

Large-Scale Geometric Programming Benchmark (11-5-2002).

#### BOUND-CONSTRAINED NONLINEAR PROGRAMMING

Large-Scale Bound-Constrained NLP Benchmark (11-3-2002)

#### NONLINEAR PROGRAMMING

- AMPL-NLP Benchmark, IPOPT, KNITRO, LOQO, SNOPT & FILTER (8-12-2002)
- Nonsmooth NLP Benchmark (9-27-2002)
- · DONLP2 on the COPS problem set (12-6-2000)
- HOP, LANCELOT, MINOS, and SNOPT on the CUTE Testset (12-1-1997)
- COBYLA on the small CUTE Testset (1-24-1997).
- COPILOT and LANCELOT on the CUTE/HS\* problems (10-1-1997)

The testenvironment comprises all of Schittkowski, Hock&Schittkowski plus additional cases

- <u>Results for DONLP2 on testenvironment (1-6-1998</u>)
- · Results for DONLP2 D on testenvironment (1-10-1998)
- Results for NPSOL on testenvironment (11-26-1996)
- · Results for FFSQP on testenvironment (1-16-1997)
- Results for NLPOL on testenvironment (3-10-1997)
- Summary of NLP benchmarks on testenvironment (3-19-1997)
  - Link to testenvironment&DONLP2(f77)
  - Link to generic testenvironment(f77)

#### Category II: One code, several platforms

#### LINEAR PROGRAMMING

LP problems with MOSEK on Pentium and SunBlade (10-12-2002)

NONLINEAR PROGRAMMING

- Runs of TESTENVIRON&DONLP2 on different architectures(10-13-2002)
  - output-files for these runs

#### Benchmarks performed by others

Number of visits to this page:

http://plato.asu.edu/ftp/older benchmarks/bench 2002.html

## An independent benchmark from the early 2000s

First time this happened





Center for Discrete Mathematics and Theoretical Computer Science A National Science Foundation Science and Technology Center

Seventh DIMACS Implementation Challenge Semidefinite and Related Optimization Problems

Market Committee

Schedule of the Challenge

Market Strength Challenge

M Topics

K The problem library

List of participants as of 6/1/00

Organizing committee

- David Johnson, AT&TLabs dsj@research.att.com
- Gabor Pataki, University of North Carolina at Chapel Hill gabor@unc.edu

#### Main The purpose of the Challenge

In conjunction with its <u>special year on large scale discrete optimization</u> problems, the Center for Discrete Mathematics and Theoretical Computer Science (<u>DIMACS</u>) invites participation in an implementation challenge on *Semidéfinite and related optimization problems*.

The purpose of DIMACS computational challenges has been to encourage the experimental evaluation of algorithms, in particular those with efficient performance from a theoretical point of view. The past Challenges brought together researchers to test time proven, mature, and novel, experimental approaches on a variety of problems in a given subject. As the subject of the last

# An independent benchmark from the early 2000s

### The benchmark paper

Math. Program., Ser. B (2002)

Digital Object Identifier (DOI) 10.1007/s10107-002-0355-5

H. D. Mittelmann

### An independent benchmarking of SDP and SOCP solvers

Received: March 27, 2001 / Accepted: April 5, 2002 Published online: ■ – ⓒ Springer-Verlag 2002

Abstract. This work reports the results of evaluating all computer codes submitted to the Seventh DIMACS Implementation Challenge on Semidefinite and Related Optimization Problems. The codes were run on a standard platform and on all the benchmark problems provided by the organizers of the challenge. A total of ten codes were tested on fifty problems in twelve categories. For each code the most important information is summarized. Together with the tabulated and commented benchmarking results this provides an overview of the state of the art in this field.

Key words. semidefinite programming - second order cone programming - optimization software - performance evaluation

#### 1. Introduction

#### 1.1. The problems solved

The primal and dual pair of conic optimization problems over a self-dual cone are defined as

$$\begin{array}{ccc} \min & \langle c, x \rangle & \max & b^T y \\ (P) & \text{s.t.} & x \in K & s.t. & z \in K \end{array} \tag{D}$$

## Was our work ever supported?

Very temporarily

- We had a small NSF grant to support benchmarking from 2000 to 2003
- A follow-up proposal was not approved
- At the ISMP 2003 meeting commercial developers discussed creating a fund to support our work
- CPLEX was not in favor
- We decided to continue without support (up to the present)

Benchmarking Optimization Software - a (Hi)Story Hans D Mittelmann

18/60

## What will be shown next

- Initially we had chosen all benchmark problems ourselves
- Later various libraries were created: MIPLIB2010/17, CBLIB14, QPLIB17
- To allow tracking of development over time we archived our benchmark talks starting in 2002. From them the history will be documented
- In view of the very latest developments mostly MILP results are presented, in particular for the "BIG THREE" CPLEX, Gurobi, XPRESS
- Note that historic MILP speedup is 10<sup>12</sup> (one trillion)

## Outline

### Background Our Service and the Rationale for Benchmarking

### The History of our Benchmarking Very Early History [1997 - 2002] Early History [2003 - 2009] Intermediate History [2010 - 2017] Latest (Hi)Story [2018 - 2019]

### The Situation Now and in the Future What did we learn? What will we do? What are the others doing?

### first parallel computations, AMD

- 9 Sep 2006
- \_\_\_\_\_

## Parallel CPLEX on MIP problems

elapsed CPU seconds on 2.4GHz Opteron (64-bit, Linux)

| class | problem  | Opter-1 | Opter-2 | Opt-dual |
|-------|----------|---------|---------|----------|
|       |          |         |         |          |
| MILP  | bienst2  | 2529    | 608     | 762      |
|       | lrn      | 114     | 85      | 356      |
|       | mas74    | 897     | 441     | 483      |
|       | neos13   | 2073    | 1694    | 2266     |
|       | neos5    | 1169    | >40000  |          |
|       | seymour1 | 669     | 449     | 526      |

Benchmarking Optimization Software - a (Hi)Story

### first parallel computations, AMD

| 9 Sep 2 |                                                                                  | allel       | CPLEX on MIF                                         | •======<br>• problems<br>========                   |                                                       |
|---------|----------------------------------------------------------------------------------|-------------|------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|
|         | "c": pi                                                                          | roblem      | convex                                               |                                                     |                                                       |
| MIQP    | ibienst1<br>inug08<br>iqap10<br>isqp                                             | c<br>c      | 2742<br>7973<br>1679<br>4755                         | 1330<br>4761<br>457<br>2824                         | 1105<br>10209<br>687<br>8827                          |
| MIQQP   | ibienst1<br>imisc07<br>imod011<br>inug06-3rd<br>inug08<br>iran13x13<br>CLay0304M | с<br>с<br>с | 3132<br>6460<br>7348<br>6588<br>4221<br>8756<br>1278 | 1878<br>3255<br>9463<br>6890<br>2336<br>3876<br>630 | 2644<br>3445<br>10014<br>7833<br>2768<br>4278<br>1329 |

Benchmarking Optimization Software - a (Hi)Story

27 Oct 2007 Parallel CPLEX on MIP problems

Logiles at http://plato.asu.edu/ftp/ser\_par\_logs/

CPLEX-11.0 was run in default mode on a single and on a 2-processor 2.4GHz Opteron (64-bit, Linux), as well as on 1,2,4 processors of a 2.667GHz Intel Core 2 Quad on problems from

http://plato.asu.edu/ftp/milpf.html
http://plato.asu.edu/ftp/miqp.html

Times given are elapsed CPU times in seconds.

27 Oct 2007

\_\_\_\_\_

## Parallel CPLEX on MILP problems

elapsed CPU sec on AMD Opteron resp Intel Core2 (64-bit, Linux) "c": problem convex

|       |          | === |         |         |         |         |         |
|-------|----------|-----|---------|---------|---------|---------|---------|
| class | problem  | С   | Opter-1 | Opter-2 | Intel-1 | Intel-2 | Intel-4 |
|       |          | === |         |         |         |         |         |
| MILP  | bienst2  | У   | 203     | 83      | 154     | 70      | 34      |
|       | lrn      | У   | 101     | 51      | 54      | 25      | 26      |
|       | mas74    | У   | 467     | 365     | 294     | 131     | 71      |
|       | neos13   | У   | 154     | 524     | 67      | 91      | 245     |
|       | neos5    | У   | 251     | 207     | 185     | 117     | 40      |
|       | seymourl | У   | 284     | 204     | 158     | 114     | 71      |

Benchmarking Optimization Software - a (Hi)Story

Hans D Mittelmann

### Intel vs AMD

27 Oct 2007

Parallel CPLEX on MIQP and MIQQP problems

| ======<br>class | problem                                                            | C           | Opter-1                                 | Opter-2                                     | Intel-1                                 | Intel-2                                 | Intel-4                               |
|-----------------|--------------------------------------------------------------------|-------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|
| =====<br>MIQP   | ibienst1<br>inug08<br>iqap10<br>isqp                               | У<br>У<br>У | 1612<br>7954<br>1560<br>5847            | 1447<br>4940<br>467<br>3994                 | 1052<br>2820<br>599<br>1790             | 466<br>1593<br>185<br>1043              | 313<br>1844<br>180<br>1970            |
|                 | ibienst1<br>imisc07<br>imod011<br>nug06-3rd<br>inug08<br>iran13x13 | У<br>У<br>У | 331<br>83<br>9353<br>8016<br>4281<br>40 | 112<br>46<br>>10200<br>>15600<br>4021<br>50 | 247<br>54<br>5025<br>4251<br>2598<br>29 | 105<br>31<br>3571<br>3230<br>1473<br>13 | 51<br>22<br>2916<br>3582<br>1068<br>7 |

Benchmarking Optimization Software - a (Hi)Story

## Early History more Intel vs AMD

Logiles at http://plato.asu.edu/ftp/ser\_par\_logs/

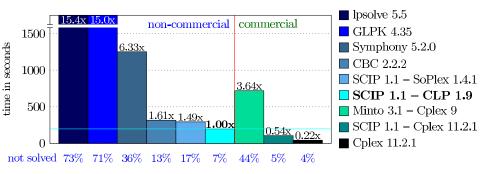
CPLEX-11.1 was run in opportunistic and deterministic parallel mod on 4 and 8 processors of a dual-quad 2.2GHz Opteron (64-bit, Linux as well as on 1, 2, 4 processors of a 2.667GHz Intel Core 2 Quad (64-bit, Linux) on problems from the benchmarks:

http://plato.asu.edu/ftp/milpf.html
http://plato.asu.edu/ftp/miqp.html

Times given are elapsed CPU times in seconds.

## Early History more Intel vs AMD

| 10 Apr 2008 ================================== |                              |       |       |       |            |       |       |         |        |  |
|------------------------------------------------|------------------------------|-------|-------|-------|------------|-------|-------|---------|--------|--|
|                                                |                              |       |       |       | n MILP<br> | -     |       |         |        |  |
| elapsed C                                      | CPU sec                      |       |       |       |            |       |       | -bit, 1 | Linux) |  |
| problem                                        | Opt4o                        | Opt4d | Opt8o | Opt8d | Intl1      | Int2o | Int2d | Int4o   | Int4d  |  |
| bienst2                                        | 59                           | 119   | 34    | 64    | 156        | 71    | 97    | 40      | 89     |  |
| lrn                                            | 41                           | 58    | 39    | 55    | 38         | 27    | 44    | 49      | 39     |  |
| mas74                                          | 120                          | 131   | 91    | 109   | 237        | 116   | 182   | 65      | 105    |  |
| neos13                                         | 236                          | 290   | 214   | 127   | 72         | 98    | 90    | 126     | 282    |  |
| neos5                                          | 57                           | 202   | 40    | 117   | 189        | 64    | 247   | 21      | 150    |  |
| seymour1                                       | 91                           | 123   | 67    | 101   | 166        | 100   | 114   | 65      | 84     |  |
|                                                | o opportanizorio parattoriom |       |       |       |            |       |       |         |        |  |


Benchmarking Optimization Software - a (Hi)Story

### Early History more Intel vs AMD

Parallel CPLEX on MIQP and MIQCQP problems ("c" convex)

| problem   | С | Opt40 | Opt4d | Opt80 | Opt8d | Intl1 | Int2o | Int2d | Int4o | Int4d |
|-----------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| ibienst1  |   | 236   | 421   | 121   | 458   | 1174  | 453   | 584   | 295   | 298   |
| inug08    | У | 1989  | 1852  | 1483  | 1695  | 3113  | 1632  | 1570  | 1732  | 1652  |
| iqap10    |   | 350   | 480   | 347   | 543   | 664   | 191   | 222   | 179   | 267   |
| isqp      | У | 1735  | 2029  | 1690  | 1954  | 1798  | 1061  | 1140  | 2193  | 2033  |
|           |   |       |       |       |       |       |       |       |       |       |
| ibienst1  |   | 49    | 317   | 23    | 311   | 253   | 75    | 480   | 34    | 241   |
| imisc07   |   | 40    | 113   | 42    | 57    | 110   | 75    | 236   | 48    | 76    |
| imod011   | У | 3481  | 7705  | 3736  | 8021  | 5292  | 3822  | 5300  | 3123  | 5303  |
| inug06-3  | У | 4301  | 6284  | 4211  | 6483  | 4317  | 3280  | 4371  | 3130  | 4280  |
| inug08    | У | 2520  | 2007  | 1035  | 1559  | 2762  | 1576  | 1941  | 1068  | 1357  |
| iran13x13 | 3 | 8     | 94    | 7     | 103   | 27    | 12    | 100   | 7     | 64    |

### Early History From the SCIP webpage 2/28/2009



## What happened in the early history?

- Multicore computing becomes the standard
- After publishing CPLEX vs. XPRESS in a benchmark in 2007, XPRESS(Dash) asks not to be included
- In late 2008 at INFORMS Washington/DC Bixby/Gurobi presents first results after 18 months, during 9 of which code development by Gu and Rothberg
- Later Gurobi makes code available to academics; this forces CPLEX to make it available as well; we include Gurobi starting 2010
- FICO buys XPRESS. In 2010 they want to be included again

## Outline

### Background Our Service and the Rationale for Benchmarking

### The History of our Benchmarking

Very Early History [1997 - 2002] Early History [2003 - 2009] Intermediate History [2010 - 2017] Latest (Hi)Story [2018 - 2019]

### The Situation Now and in the Future What did we learn? What will we do? What are the others doing?

Benchmarking Optimization Software - a (Hi)Story Hans D Mittelmann KI MATHEMATICS AND STATISTICS 31 / 60

## Intermediate History

Our initial selection of difficult problems

CPLEX-12.1 GUROBI-3.0.0 CBC-2.4.1 MOSEK-6.0.0.78 SCIP-1.2.0 (CPLEX or CLP as LP solver)

| problem                  | CPLEX4           | GUROBI4         | SCIPC         | CBC4           | MOSEK            | SCIPL       |
|--------------------------|------------------|-----------------|---------------|----------------|------------------|-------------|
| bc                       | >50000           | 232             | 7681          | >40000         | >40000           | 6564        |
| neos-849702<br>ns1952667 | 209<br>147       | 19583<br>>60000 | 1295<br>811   | 1864<br>>60000 | >40000<br>>40000 | 3004<br>503 |
| ns2017839<br>ns2034125   | 66<br>>65000     | 251<br>3501     | 112<br>>65000 | 6902<br>>65000 | 18106<br>>40000  | 58<br>fail  |
| ns2070961<br>ns2071214   | >80000<br>>72000 | >40000<br>32042 | 18279<br>f    | >40000         | >40000<br>>40000 | >40000      |
| ns2081729                | >60000           | 363             | 11649         | >40000         | >40000           | 14329       |
| ns2082664<br>ns2082847   | 5<br>1           | 4<br>1          | 5164<br>>5000 | >40000<br>24   | 1<br>>40000      | 21<br>1     |

Benchmarking Optimization Software - a (Hi)Story

Hans D Mittelmann

**KSU MATHEMATICS AND STATISTICS** 32 / 60

## Intermediate History

11 Nov 2011 Mixed Integer Linear Programming Benchmark (MIPLIB2010)

Scaled shifted geometric means of times, 87 problems total

| threads      | CBC                     | CPLEX | GLPK       | GUROBI | LPSOLVE   | SCIPC      | SCIPL | SCIPS | XPRESS     |
|--------------|-------------------------|-------|------------|--------|-----------|------------|-------|-------|------------|
| 1<br>solved  |                         |       | 19.14<br>3 |        | 16.8<br>5 | 3.19<br>61 |       |       |            |
| threads      | CBC                     | CP    | LEX        | FSCI   | PC FS     | CIPS       | GURO  | 3I :  | XPRESS     |
| 4<br>solved  | 10.2 <sup>7</sup><br>52 |       | 1<br>84    | 5.78   | 8 9       | •          | 1.00  | 5     | 1.23<br>79 |
| threads      | СВС                     | CP    | LEX        | FSCI   | PC FS     | CIPS       | GUROI | 3I 2  | XPRESS     |
| 12<br>solved |                         | _     | 1<br>84    | 68     | 8 1:      | 65         | 87    | )7    | 83         |

Benchmarking Optimization Software - a (Hi)Story

Hans D Mittelmann

## What is the shifted geometric mean?

- There are huge problems in using the performance profiles for several codes in one graph
- One would need to do N 1 graphs for N codes
- Commercial code developers use the shifted geometric mean
- If *c<sub>i</sub>* is the compute time for instance *i* then one computes
- $(\prod_{i=1}^{N} [c_i + \text{shift}])^{\frac{1}{N}} \text{shift}$
- For the shift typically 10 [secds] is used to avoid skewing from relatively very small *c<sub>i</sub>*
- This provides a balanced averaging

## Intermediate History

9 Aug 2012 Mixed Integer Linear Programming Benchmark (MIPLIB2010) threads CBC CPLEX GLPK GUROBI LPSOLVE SCIPC SCIPL SCIPS XPRESS \_\_\_\_\_ 1 10.1 1.26 21.6 1 18.9 3.37 5.30 5.00 1.09 solved 41 75 3 77 5 64 55 58 76 \_\_\_\_\_ threads CBC CPLEX FSCIPC FSCIPS GUROBI XPRESS \_\_\_\_\_ 4 11.6 1.13 6.03 10.2 1 1.17 solved 52 84 69 65 83 81 threads CBC CPLEX FSCIPC FSCIPS GUROBI XPRESS \_\_\_\_\_ 12 13.4 1.2 9.51 15.6 1 1.25 solved 55 84 71 66 87 82

## **Intermediate History**

31 May 2013 MILP cases that are slightly pathological CPLEX-12.5.1pre CPLEX GUROBI-5.5.0: GUROBI ug[SCIP/cpx]: FSCIP-Parallel development version of SCIP CBC-2.8.0: CBC XPRESS-7.5.0: XPRESS SCIP-3.0.1: serial SCIP with CPLEX

Table for 12 threads, Result files per solver, Log files per solver

| Scaled                                                     | shifted          | geometric  | mean of    | runtimes | and prob   | lems solv | ed (25 total) |
|------------------------------------------------------------|------------------|------------|------------|----------|------------|-----------|---------------|
| СВС                                                        | CPLEX            | K FSCIP    | GUROBI     | SCIP     | XPRESS     | CPLEX-5   | GUROBI-5      |
| 8.79                                                       | ) <u>1</u><br>23 | 9.27<br>14 | 1.65<br>24 | 7.64     | 2.53<br>17 |           | 0.75<br>24    |
| GUROBI/CPLEX-5. Best of 5 runs with random seeds 1001-1005 |                  |            |            |          |            |           |               |

Benchmarking Optimization Software - a (Hi)Story H

Hans D Mittelmann

H. Mittelmann (mittelmann@asu.edu)

CBC-2.9.4: CBC CPLEX-12.6.2: CPLEX GUROBI-6.0.0: GUROBI XPRESS-7.9.0: XPRESS FiberSCIP[cpx]-3.1.1: Parallel development version of SCIP

Table for all solvers, Result files per solver, Log files per solver

| CBC | CPLEX | GUROBI  | XPRESS    | FSCIP          |
|-----|-------|---------|-----------|----------------|
|     |       |         |           |                |
| 12  | 1.05  | 1       | 1.74      | 7.64           |
| 115 | 194   | 194     | 170       | 139            |
|     | 12    | 12 1.05 | 12 1.05 1 | 12 1.05 1 1.74 |

Benchmarking Optimization Software - a (Hi)Story

| 11 Nov 2016                                                                         |                           |              |             |              |             |
|-------------------------------------------------------------------------------------|---------------------------|--------------|-------------|--------------|-------------|
|                                                                                     | The                       | Solvable M   | IPLIB Insta | ances (MIPL] | IB2010)     |
|                                                                                     | ====                      |              |             |              |             |
| CBC-2.9.8: CBC<br>CPLEX-12.7.0:<br>GUROBI-7.0.0:<br>XPRESS-8.0.0:<br>FiberSCIP[cpx] | CPLEX<br>GUROBI<br>XPRESS | arallel de   | velopment   | version of S | SCIP        |
| no. of probs                                                                        |                           |              |             |              |             |
| 12 threads                                                                          | 1183<br>15.5              | 85.7<br>1.13 | 76<br>1     | 158<br>2.07  | 727<br>9.56 |
| no. of probs                                                                        | CPLEX                     | GUROBI       | XPRESS      |              |             |
| 48 threads<br>213<br>solved                                                         | 1.19                      | 1            | 2.07        |              |             |

Benchmarking Optimization Software - a (Hi)Story

Updated versions of codes

### Gurobi clearly ahead

|                            |                  |                    | GUROBI            |                   |                   |                  | MATLAB           |
|----------------------------|------------------|--------------------|-------------------|-------------------|-------------------|------------------|------------------|
| unscal<br>scaled<br>solved | 1639<br>32<br>53 | 66.7<br>1.31<br>87 | 50.8<br>1<br>87   | 435<br>8.56<br>74 | 473<br>9.32<br>71 | 97<br>1.91<br>85 | 2834<br>56<br>36 |
|                            |                  |                    | FSCIPC            |                   |                   |                  | SS MIPCL*        |
| scaled<br>solved           | 28.2<br>66       | 1.37<br>86         | 278<br>9.28<br>74 | 11.9<br>74        | 1<br>87           | 1.6<br>85        | 0 8.41<br>79     |
| * 8 thr                    |                  |                    |                   |                   |                   |                  |                  |
|                            |                  |                    | FSCIPC            |                   |                   |                  | SS MIPCL         |
| unscal<br>scaled           | 668<br>24        | 32.8<br>1.17       | 286<br>10.2<br>73 | 448<br>16         | 27.9<br>1         | 9 40.            | 9 209<br>6 7.48  |

Benchmarking Optimization Software - a (Hi)Story

Hans D Mittelmann

**MATHEMATICS AND STATISTICS** 40 / 60

What happened in the intermediate history?

- MIPLIB2010 was released
  - 361 instances, benchmark set 87, still unsolved 70
- We introduce the shifted geometric mean
- Gurobi surpasses CPLEX, XPRESS falls behind
- Standard benchmark set becomes too easy
- A new benchmark in 2013: SOCP and MISOCP (not shown, from CBLIB)
- A new code appears out of nowhere: MIPCL

# Outline

Background

Our Service and the Rationale for Benchmarking

### The History of our Benchmarking

Very Early History [1997 - 2002] Early History [2003 - 2009] Intermediate History [2010 - 2017] Latest (Hi)Story [2018 - 2019]

### The Situation Now and in the Future What did we learn? What will we do? What are the others doing?

### Latest (Hi)Story Pre INFORMS 2018

21 Jun 2018

The Solvable MIPLIB Instances (MIPLIB2010)

H. Mittelmann (mittelmann@asu.edu)

The following codes were run on the "green" problems from MIPLIB2010 with the MIPLIB2010 scripts on an Intel Xeon X5680 (32GB, Linux, 64 bits, 2\*6 cores) and with 40 threads on an Intel Xeon Gold 6138, 40 cores, 256GB, 2.00GHz.

CBC-2.9.8, CPLEX-12.8.0, GUROBI-8.0.0, XPRESS-8.5.1, FiberSCIP[cpx]-4.0.0, ODH-3.3.6, SAS-OR-14.3

| no. of probs | CBC   | CPLEX  | GUROBI | XPRESS | FSCIP | SAS  |
|--------------|-------|--------|--------|--------|-------|------|
| 12 threads   | 1266  | 73.4   | 60.9   | 95.3   | 746   | 256  |
| 220          | 20.8  | 1.20   | 1      | 1.56   | 12.2  | 4.21 |
| solved       | 119   | 211    | 213    | 207    | 140   | 171  |
| no. of probs | CPLEX | GUROBI | XPRESS | SAS    | ODH   |      |
| 40 threads   | 54.0  | 44.2   | 64.7   | 197    | 54.9  |      |
| 220          | 1.22  | 1      | 1.46   | 4.46   | 1.24  |      |
| solved       | 211   | 216    | 208    | 183    | 212   |      |

unscaled and scaled shifted geometric means of runtimes

Benchmarking Optimization Software - a (Hi)Story

Hans D Mittelmann

# In how many benchmarks are the BIG THREE?

- Pre INFORMS 2018
  - CPLEX is in 15 of 22 of our benchmarks
  - Gurobi and XPRESS are in 13 of our benchmarks (not TSP, not QCQP)
- Post INFORMS 2018
  - CPLEX, Gurobi, XPRESS are in NONE of our benchmarks
- What happened?
- This is finally the Story
  - Gurobi advertised aggressively
  - CPLEX (IBM) and XPRESS (FICO) reacted

Benchmarking Optimization Software - a (Hi)Story

## This is what happened at INFORMS2018 The Story part I

- Over many years Gurobi had used our benchmark results for advertising making bargraphs from the tables
- At INFORMS 2018 the library MIPLIB2017 was released. We had just used it in our benchmark. It has 240 instances and only the full set is a benchmark set
- Instance selection of MIPLIB2017 uses a sophisticated computer program
- Gurobi was represented on the MIPLIB2017 committee
- At INFORMS2018 Gurobi claimed that we had used certain
   99 MIPLIB2017 instances in our benchmark showing they are
   2.69 times faster than CPLEX and 5.51 times faster than XPRESS

## This is what happened at INFORMS2018 The Story part II

- On the last day of the conference in our session Gurobi apologized to IBM, FICO, ourselves and the community
- Tobias Achterberg and Zonghao Gu draft a paper analyzing what had happened
- After INFORMS2018 both IBM and FICO request that we remove their numbers from all benchmarks
- We decide to also omit the Gurobi numbers
- See the following slides documenting these developments

46 / 60

# Gurobi Optimizer 8.1: The Fastest Solver in the World

# Faster than CPLEX

2.69X

# 5.51X

## Faster than Xpress

"Benchmarks on the 99 models in the new 2017 MIPLIB demonstrate the purest objective comparison of speed." Independent performance tests performed by Professor Hans Mittelmann using all new models from the recently released MIPLIB 2017 benchmark set show that Gurobi Optimizer 8.1.0 is 2.69X faster than IBM® CPLEX 12.8.0 and 5.51X faster than FICO® Xpress 8.5.1.

- The new 2017 MIPLIB is a standard test set used to compare the performance of Mixed-Integer Programming (MIP) solvers.
- These results look at performance on all 99 new models in the set.
- Considering only the newest models in the set gives the fairest, most objective speed comparison, since none of the vendors have had a chance to tune to these models.
- These numbers show geometric mean runtime ratios, calculated using the standard PAR-10 performance testing methodology.
- These results confirm Gurobi Optimizer's position as the world's fastest math programming solver.



#### Announcement

November 7, 2018, Beaverton, OR - At the INFORMS 2018 Annual Meeting Gurobi workshop and in the corresponding marketing material, including a Twitter post, we published analytics claiming Gurobi was faster, as compared to CPLEX and Xpress, than it actually is. The figures reported in those publications were incorrect, and we retract those statements in full.

We phrased our messaging in a way that suggests that the 99 models we were using are the official MIPLIB 2017 benchmark set. The models we used are, however, only a subset of the larger benchmark set, and this subset was selected by us. We thought that our subset selection was fair, but now realize that it was not. We apologize to the MIPLIB 2017 committee for this fundamental error in our analytic approach.

In addition, we attributed our experiment to Prof. Hans Mittelmann in such a way that it gives the clear impression of being an independent analysis. This is inaccurate. Prof. Mittelmann only produced the log files, which we then used to extract the results that we reported. We apologize to Prof. Mittelmann for this misleading characterization of his involvement in our flawed analysis.

In addition, we apologize to IBM CPLEX and FICO Xpress, for unfairly representing the performance of their respective products.

We would like to thank our competitors for the gracious way in which they have handled this matter by simply bringing it to the attention of the MIP community as a whole rather than trying to leverage it against us. We are grateful that, in spite of the fierce competition between vendors, this industry follows and maintains high scientific and ethical standards. Our performance in this instance fell below those standards, which we sincerely regret. We will strive to do better and to avoid making errors like this in the future.

#### About Gurobi

Gurobi (www.gurobi.com) is in the business of helping companies make better decisions through the use of prescriptive analytics. In addition to providing the best math programming solver, as well as tools for distributed optimization and optimization in the cloud, the company is known for its outstanding support and straightforward pricing.

The Gurobi Optimizer is a state-of-the-art solver for linear programming (LP), quadratic programming (QP), quadratically constrained programming (QCP), mixed-integer quadratically constrained programming (MIQP), mixed-integer quadratically constrained programming (MIQP). Gurobi was designed from the ground up to exploit modern architectures and multi-core processors, using the most advanced implementations of the latest algorithms. Founded in 2008, Gurobi Optimization is based in Beaverton, OR (+1 713 871 9341).

Contact: Duke Perrucci Gurobi Optimization Mobile: +01 203-391-8027 Perrucci@Gurobi.com

### Good Benchmarking Practices – And What Happens If They Are Ignored

Tobias Achterberg<sup>\*</sup>, Zonghao Gu<sup>†</sup>, and Michael Winkler<sup>‡</sup>

Gurobi Optimization

13 December 2018

#### Abstract

Conducting computational experiments to evaluate the performance of solvers for an optimization problem is a very challenging task. In this paper, we outline good practices regarding test set selection and benchmarking methodology. Moreover, we present a concrete example in our context of mixed integer linear programming solvers, where failure to adhere to these guidelines results in wrong conclusions.

#### 1 Introduction

Gurobi is one of today's fastest solvers for mixed integer linear programming. In the development of such a software, one of the key aspects is to be able to assess whether a new component or a change to some existing algorithm improves the overall performance of the solver. Moreover, for competitive reasons, it is interesting to know how the performance of ones own solver compares against the competition. Such questions are usually answered by conducting benchmark runs on a set of test problems. Then, the running times of the different solvers or solver versions are compared in order to draw qualitative and quantitative conclusions about their performance. It is, however, not easy to perform this evaluation in a reasonable way. If done wrong, the conclusions drawn from the

### MIPLIB 2017: a Data-Driven Compilation of the 6th Mixed Integer Programming Library

| Ambros Gleixner   | Gregor Hendel      | Gerald Gamrath  |
|-------------------|--------------------|-----------------|
| Tobias Achterberg | Michael Bastubbe   | Timo Berthold   |
| Philipp Christoph | el Kati Jarck      | Thorsten Koch   |
| Jeff Linderoth    | Marco Lübbecke     | Hans Mittelmann |
| Ted Ralphs 1      | Domenico Salvagnin | Yuji Shinano    |

March 4, 2019

#### List of symbols

| D Total dissimilarity                    | R Cluster count                                 |
|------------------------------------------|-------------------------------------------------|
| ${\mathcal E}$ Set of excluded instances | r Ranking                                       |
| $\varepsilon$ Fe<br>asibility tolerance  | $\mathcal{S}$ Set of solvers                    |
| F Feature matrix                         | $\sigma$ shift value in geometric mean com-     |
| $\mathcal{F}$ Instance clustering        | putation                                        |
| $\mathcal{G}$ Set of model groups        | T The time limit                                |
| $\mathcal{I}$ Set of instances           | t running time in seconds                       |
| ${\mathcal I}$ Set of submitters         | $t^{\mathbf{rel}}$ performance matrix           |
| $\mathcal{P}$ Performance clustering     | $\omega$ weight (objective coefficient) of each |
| Q Dimension of static feature space      | instance                                        |

### Latest (Hi)Story After INFORMS 2018



Want to stay informed? Click here (/s/follow-our-blogs) to follow your favorite blogs!

DECEMBER 27, 2018

#### Oliver Bastert - FICO Withdraws from the Mittelmann Benchmarks

FICO is deeply committed to the field of mathematical optimization. In addition to thousands of end-users of our commercial FICO Xpress Optimization (https://www.fico.com/en/products/fico-xpressoptimization?utm\_source=FICO-Community&utm\_medium=withdraws-opti-benchmarking-blog) software, we support hundreds of academic institutions each year with our free Xpress Community License (http://content.fico.com/xpress-optimization-community-license?utm\_source=FICO-Community&utm\_medium=withdraws-opti-benchmarking-blog) and our Xpress Academic License

(http://content.fico.com/I/517101/2018-06-10/3fpbf?utm\_source=FICO-

<u>Community&utm\_medium=withdraws-opti-benchmarking-blog</u>). Universities around the world have adopted our optimization software in their core curriculum for teaching and research. Each year, there are over ten thousend new students who take their first teace in their omtization carees with EFCO Yorges.

### Latest (Hi)Story At INFORMS 2018

The following codes were run on the benchmark instances of the forthcoming MIPLIB2017 on an Intel Xeon X5680 (32GB, Linux, 64 bits, 2\*6 cores) and with 48 threads on an Intel Xeon E5-4657L, 48 cores, 512GB, 2.40GHz (available memory 256GB). 2/1 hours max. More codes to be added later.

CPLEX-12.8.0, GUROBI-8.1.0, XPRESS-8.5.1

| no. of probs | CPLEX | GUROBI | XPRESS |
|--------------|-------|--------|--------|
| 12 threads   | 307   | 207    | 416    |
| 240          | 1.48  | 1      | 2.01   |
| solved       | 195   | 212    | 180    |

| no. of probs | CPLEX | GUROBI | XPRESS |
|--------------|-------|--------|--------|
|              |       |        |        |
| 48 threads   | 238   | 176    | 336    |
| 240          | 1.35  | 1      | 1.90   |
| solved       | 199   | 211    | 180    |
|              |       |        |        |

unscaled and scaled shifted geometric means of runtimes

Benchmarking Optimization Software - a (Hi)Story



### **DECISION TREE FOR OPTIMIZATION SOFTWARE**

#### BENCHMARKS FOR OPTIMIZATION SOFTWARE

By Hans Mittelmann (mittelmann at asu.edu)

#### **END OF A BENCHMARKING ERA**

For many years our benchmarking effort had included the solvers CPLEX, Gurobi, and XPRESS. Through an action by Gurobi at the 2018 INFORMS Annual Meeting this has come to an end. IBM and <u>FICO</u> demanded that results for their solvers be removed and then we decided to remove those of Gurobi as well.

A partial record of previous benchmarks can be obtained from this webpage and some additional older benchmarks

Note that on top of the benchmarks a link to logfiles is given!

NOTE ALSO THAT WE DO NOT USE PERFORMANCE PROFILES. SEE <u>THIS PAPER</u> AND THAT ONE

# Outline

### Background

Our Service and the Rationale for Benchmarking

### The History of our Benchmarking

Very Early History [1997 - 2002] Early History [2003 - 2009] Intermediate History [2010 - 2017] Latest (Hi)Story [2018 - 2019]

# The Situation Now and in the Future What did we learn?

What will we do? What are the others doing?

# What did we learn?

- Optimization Software is a cutthroat business
- IBM and FICO claim that Gurobi had their licenses for years while refusing to grant them a license for Gurobi
- Sometimes even very smart people overstep the mark
- Now users have to benchmark themselves again
- Our benchmarks are less exciting but to make up a bit for the loss we list ballpark geomeans for best commercial codes

# Outline

### Background

Our Service and the Rationale for Benchmarking

### The History of our Benchmarking

Very Early History [1997 - 2002] Early History [2003 - 2009] Intermediate History [2010 - 2017] Latest (Hi)Story [2018 - 2019]

### The Situation Now and in the Future

What did we learn? What will we do? What are the others doing?

# What will we do?

We will travel to China for three conferences

• We will benchmark noncommercial and some commercial codes

• We will have less stress before INFORMS meetings

• We will observe the development and provide free advertising for "free" codes

# Outline

### Background

Our Service and the Rationale for Benchmarking

### The History of our Benchmarking

Very Early History [1997 - 2002] Early History [2003 - 2009] Intermediate History [2010 - 2017] Latest (Hi)Story [2018 - 2019]

### The Situation Now and in the Future

What did we learn? What will we do? What are the others doing?

# What are the others doing?

They are advertising they best they can

Gurobi: The Fastest Mathematical Programming Solver

CPLEX: The Most Robust and Reliable Solver

• XPRESS: Fast and Reliable ... Solvers and Optimization Technologies

Benchmarking Optimization Software - a (Hi)Story Hans D Mittelmann KSI MATHEMATICS AND STATISTICS 59 / 60



# Questions or Remarks?

slides of talk at: http://plato.asu.edu/talks/china2019.pdf

our benchmarks at: http://plato.asu.edu/bench.html

decision tree guide at: http://plato.asu.edu/guide.html

Benchmarking Optimization Software - a (Hi)Story Hans D Mittelmann KI MATHEMATICS AND STATISTICS 60 / 60