Optimizing Systems with Conflicting Objectives Competing for a Limited Resource

Radar waveform design, Unimodular QP UAV tracking optimization

Hans D. Mittelmann

School of Mathematical and Statistical Sciences Arizona State University

AFOSR Optimization and Discrete Math Review

23 August 2019

collaborators

Shankarachary Ragi, South Dakota School of Mines & Technology

Daniel Bliss, Alex Chiriyath, Arizona State University

Edwin Chong, Colorado State University

Shawon Dey, Azam Md Ali, South Dakota School of Mines & Technology

Outline

Waveform Design for Joint Radar-Communications

Background Waveform Optimization Methods Numerical Results

Unimodular Quadratic Programs

Background Problem Description Existing Methods Our Methods Numerical Results

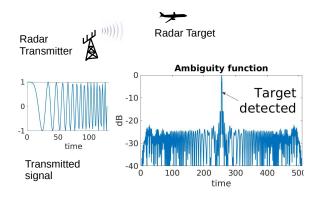
Ongoing Research

Competing Objective Optimization in Networked Swarm Systems

Introduction

- Traditionally, wireless communications (0.3 3 GHz) and radar (3 30 GHz) are spectrally separated
- Spectral congestion forcing co-existence ۲
- Key performance factors: spectral shape of waveform, receiver design, signal decoupling strategies

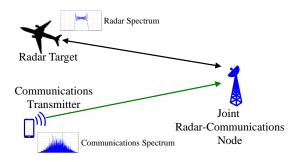
Radar: Preliminaries



Waveform transmission \rightarrow Scattered signal recovery \rightarrow Matched filter response

- Signal delay → Range detection
- Doppler shift \rightarrow Speed detection

Joint Radar-Comms System

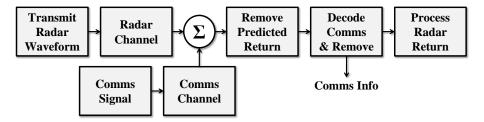


Key functions:

- Sends radar pulses for target detection
- · Receives a mixed signal radar return and communications signal
- Decouples the signals
- Processes radar returns for ranging and speed

Signal Decoupling

Successive-Interference Cancellation



Key step: Remove predicted radar return from the mixture

Performance Indicators

· Communications performance: Shannon's information rate bound

$$R_{\text{com}} \leq B \log_2 \left(1 + \frac{\|b\|^2 P_{com}}{\sigma_{\text{int+n}}^2} \right)$$

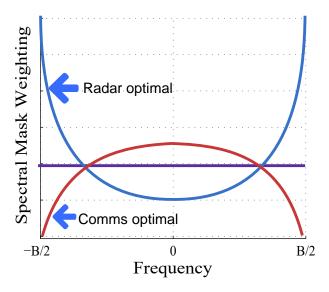
 Radar performance: estimation rate bound [D. W. Bliss, 2014 IEEE Radar Conference]

$$R_{ ext{est}} \leq rac{\delta}{2T} \log_2 \left[1 + rac{\sigma_{ ext{proc}}^2}{\sigma_{ ext{est}}^2}
ight]$$

Spectral shape of the waveform directly influences the above performance indicators!

$$\sigma_{
m int+n}^2 \propto oldsymbol{B}_{
m rms} ~~\sigma_{
m est}^2 \propto rac{1}{oldsymbol{B}_{
m rms}}$$

Spectral-Shape Affects Performance

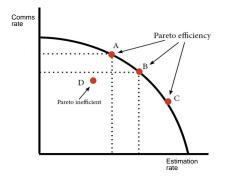


Maximizing joint radar-communications performance

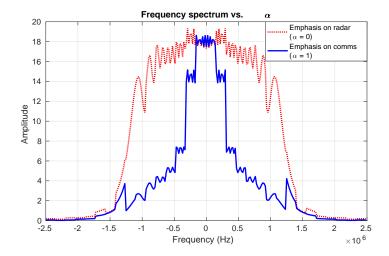
u controls the spectral-shape of the waveform!

$$\begin{array}{ll} \underset{\boldsymbol{u} \in [0,1]^{N}}{\text{maximize}} & \left[R_{\text{com}}(\boldsymbol{u})\right]^{\alpha} \left[R_{\text{est}}(\boldsymbol{u})\right]^{1-\alpha} \\ \text{subject to system constraints} \end{array}$$

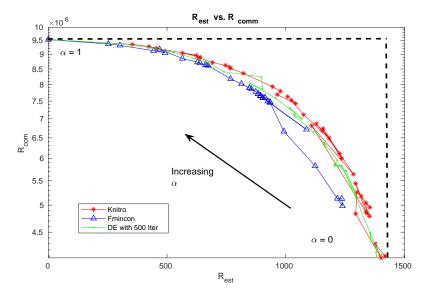
Result: If *u*^{*} is the optimal solution, then *u*^{*} is **pareto efficient** [S. Ragi, A. Chiriyath, D. Bliss, H. Mittelmann, Optimization-Online pre-print]



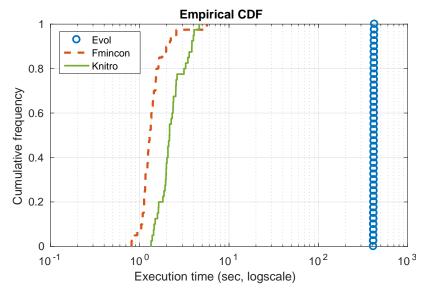
Spectrum: $\alpha = 0$ and $\alpha = 1$



Solver Performance



Solver Performance



Outline

Waveform Design for Joint Radar-Communications

Background Waveform Optimization Methods Numerical Results

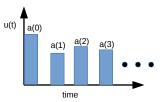
Unimodular Quadratic Programs

Background Problem Description Existing Methods Our Methods Numerical Results

Dngoing Research Competing Objective Optimization in Networked Swarm Systems

Monostatic Radar

Transmits encoded pulse sequence



Objective: optimize *c* = (*a*(0),..., *a*(*N*))^T, where |*a*(*i*)| = 1 ∀*i*, to maximize signal-to-noise ratio (SNR)

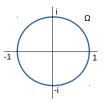
$$SNR = \boldsymbol{c}^{H}\boldsymbol{R}\boldsymbol{c}$$

where $\boldsymbol{R} = \boldsymbol{M}^{-1} \odot (\boldsymbol{p} \boldsymbol{p}^{H})^{*}, \, \boldsymbol{M} = \mathrm{E}[\boldsymbol{w} \boldsymbol{w}^{H}]$

Code optimization leads to unimodular quadratic program (UQP)

Unimodular Quadratic Program

•
$$\Omega = \{x \in \mathbb{C}, |x| = 1\}$$



• Unimodular quadratic program (UQP)

$$\underset{\boldsymbol{s}\in\Omega^{N}}{\operatorname{maximize}} \quad \boldsymbol{s}^{H}\boldsymbol{R}\boldsymbol{s}$$

where $\mathbf{R} \in \mathbb{C}^{N \times N}$ is a Hermitian matrix.

- Many problems in radar and wireless communications lead to UQP
- UQP is an NP-hard problem [S. Zhang, et. al., "Complex quadratic optimization and semidefinite programming," *SIAM J. Optimization*, 2006]

Semi-Definite Relaxation (SDR)

• UQP can also be stated as (since **s**^H**Rs** = tr(**s**^H**Rs**) = tr(**Rss**^H))

```
\begin{array}{ll} \underset{\boldsymbol{s}}{\text{maximize}} & \text{tr}(\boldsymbol{R}\boldsymbol{S})\\ \text{subject to} & \boldsymbol{S} = \boldsymbol{s}\boldsymbol{s}^{H}, \ \boldsymbol{s} \in \Omega^{N}. \end{array}
```

• If rank constraint is relaxed \Rightarrow semidefinite program (SDP)

```
\begin{array}{ll} \underset{\boldsymbol{S}}{\text{maximize}} & \text{tr}(\boldsymbol{RS}) \\ \text{subject to} & [\boldsymbol{S}]_{k,k} = 1, \, k = 1, \dots, N \\ & \boldsymbol{S} \text{ is positive semidefinite.} \end{array}
```

• SDP can be solved in polynomial time

Phase-Matching with Dominant Eigenvector

- Pick $\boldsymbol{d} \in \Omega^N$ that "phase-matches" the dominant eigenvector of \boldsymbol{R}
- Time complexity: $\mathcal{O}(N^3)$
- Example:

If $(0.2e^{i\pi/3}, 0.6e^{i\pi/4}, 0.77e^{i\pi/5})^{T}$ is the dominant eigenvector, then $d = (e^{i\pi/3}, e^{i\pi/4}, e^{i\pi/5})^{T}$

[S. Ragi, E. K. P. Chong, H. D. Mittelmann, "Heuristic methods for designing unimodular code sequences with performance guarantees," ICASSP 2017.]

Performance Bound

Result (S. Ragi, E. K. P. Chong, H. D. Mittelmann, ICASSP 2017) If $V_D = d^H R d$ and V_{opt} is the optimal objective value, then

$$rac{V_{\mathcal{D}}}{V_{opt}} \geq rac{\lambda_N + (N-1)\lambda_1}{\lambda_N N}$$

Ν	λ_1	λ_N	Bound
34	6.7	81.4	0.11
96	8.7	64.6	0.14
93	19.5	71.6	0.28
6	41.6	50.8	0.85
74	40.2	99.2	0.41
27	3	58.4	0.09

Greedy Strategy

• Greedy solution $\boldsymbol{g} = (\boldsymbol{g}(1), \dots, \boldsymbol{g}(N))^{\mathrm{T}}$

$$\begin{split} \boldsymbol{g}(k) &= \arg \max_{x \in \Omega} \ [\boldsymbol{g}_{k-1}; x]^H \boldsymbol{R}_k[\boldsymbol{g}_{k-1}; x], \\ &k = 2, \dots, N, \ \boldsymbol{g}(1) = 1 \\ \boldsymbol{g}_k &= (\boldsymbol{g}(1), \dots, \boldsymbol{g}(k))^{\mathrm{T}} \end{split}$$

where \mathbf{R}_k is the $k \times k$ principle sub-matrix of \mathbf{R} .

Example: If
$$\mathbf{R} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
, then $\mathbf{R}_2 = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, and $\mathbf{R}_3 = \mathbf{R}$

Performance Bound for Greedy Strategy

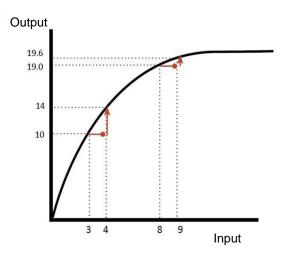
If the objective function is string submodular, then

 $oldsymbol{g}^{\mathrm{H}}oldsymbol{R}oldsymbol{g} \geq (1-1/e) \max_{oldsymbol{s}\in\Omega^{N}}$ s^HRs

where $(1 - 1/e) \approx 0.63$

String Submodular Functions

Monotonic functions with diminishing returns!



Is UQP objective function string submodular?

$$f(A_k) = A_k^H \boldsymbol{R}_k A_k$$

- *f* is not string-submodular \Rightarrow UQP for any **R** is not string-submodular
- But $\overline{f}(A_k) = A_k^H \overline{R}_k A_k$ is string submodular, where \overline{R} is obtained from R via manipulating diagonal entries of R

[S. Ragi, E. K. P. Chong, H. D. Mittelmann, "Heuristic methods for designing unimodular code sequences with performance guarantees," ICASSP 2017.]

Bound for greedy method

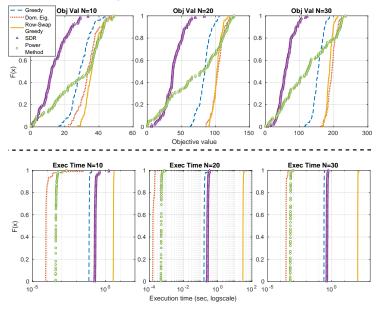
Result (S. Ragi, E. K. P. Chong, H. D. Mittelmann, ICASSP 2017) If $Tr(\overline{\textbf{R}}) \leq Tr(\textbf{R})$, then

$$oldsymbol{g}^H oldsymbol{R} oldsymbol{g} \geq \left(1-rac{1}{oldsymbol{e}}
ight) \left(\max_{oldsymbol{s} \in \Omega^N} oldsymbol{s}^H oldsymbol{R} oldsymbol{s}
ight),$$

where **g** is the solution from the greedy method.

• Time complexity of greedy method: $\mathcal{O}(N)$

Performance Comparison



Outline

Waveform Design for Joint Radar-Communications

Background Waveform Optimization Methods Numerical Results

Unimodular Quadratic Programs

Background Problem Description Existing Methods Our Methods Numerical Results

Ongoing Research

Competing Objective Optimization in Networked Swarm Systems

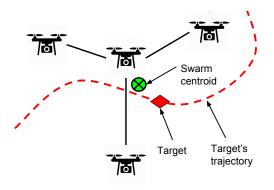
COLRO Problems

- COLRO: competing objective limited resource optimization
- COLRO problems appear naturally in many applications including decision making in autonomous systems
- · We explore novel methods to solve COLRO problems in real-time

KSU MATHEMATICS AND STATISTICS

UAV swarm control

- <u>Goal</u>: control the motion of a networked swarm of UAVs while tracking a target
- Minimizing the energy costs and maximizing the tracking performance are conflicting objectives



COLRO formulation

- Goal: optimize the motion of UAVs to maximize target tracking performance while minimizing the network energy costs
- Decision variables: swarm centroid C_k and G_k

$$\min_{\mathcal{G}_{k}, \mathcal{C}_{k}, k=0,..,H-1} \sum_{k=0}^{H-1} \mathbb{E}[wf_{track}(\mathcal{G}_{k}, \mathcal{C}_{k}, \chi_{k}) + (1) (1-w)f_{energy}(\mathcal{G}_{k}, \mathcal{C}_{k}, \chi_{k})]$$
(1)

Objective function is hard to evaluate exactly!

COLRO cost functions

$$\min_{\substack{\mathcal{G}_k, \mathcal{C}_k, k=0, \dots, H-1}} \sum_{k=0}^{H-1} \mathbb{E}[wf_{track}(\mathcal{G}_k, \mathcal{C}_k, \chi_k) + (1-w)f_{energy}(\mathcal{G}_k, \mathcal{C}_k, \chi_k)]$$

- *f*_{track} measures
 - benefits of data fusion between a pair of UAVs G_k
 - benefits of having the swarm staying close to the target C_k
- f_{energy} measures
 - benefits of using the communications network sparingly G_k

(2)

Solution Approach

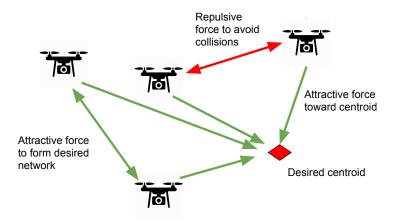
- Nominal belief-state optimization an approximate dynamic programming approach
 - Replace future noise variables with "nominal" values
 - Replace the expectation with "nominal" trajectory of the posterior distribution into the future
- Apply receding horizon control approach

$$\min_{\mathcal{G}_{k}, C_{k}, k=0,...,H-1} \sum_{k=0}^{H-1} [w \tilde{f}_{track}(\mathcal{G}_{k}, C_{k}, \psi_{k}) + (1-w) \tilde{f}_{energy}(\mathcal{G}_{k}, C_{k}, \psi_{k})]$$
(3)

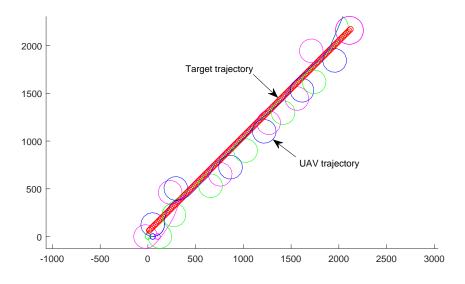
where \tilde{f}_{track} and \tilde{f}_{energy} are deterministic approximations.

• Mixed integer nonlinear program - solution is obtained via a commercial solver *Knitro*

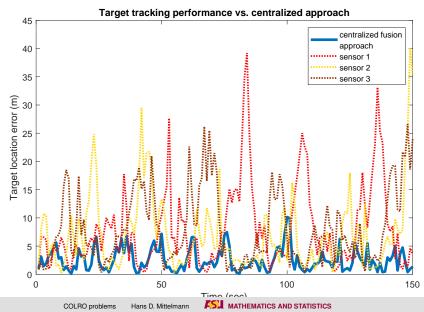
Converting G_k^* and C_k^* to UAV kinematic controls



3 UAVs and 1 target (H = 6)



Performance against centralized approach (3 UAVs)



Future Work

- Incorporate "belief consensus" into the COLRO framework
 - Running consensus algorithms leads to increased network energy costs, but improves cooperativeness of the agents
 - Belief consensus can be time consuming we will develop fast heuristic approaches
- Dealing with heterogeneous data from sensors on-board the agents, e.g., imagery, video, and audio. We need new data fusion techniques, e.g., fusion in feature space

Thank you for your attention!

For papers see http://plato.asu.edu/papers.html no.s 142-152