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Introduction

• Traditionally, wireless communications (0.3 - 3 GHz) and radar (3 - 30
GHz) are spectrally separated

• Spectral congestion forcing co-existence

• Key performance factors: spectral shape of waveform, receiver design,
signal decoupling strategies

COLRO problems Hans D. Mittelmann MATHEMATICS AND STATISTICS 4 / 36



Radar: Preliminaries

Radar 
Transmitter

Radar Target

Transmitted 
signal

Waveform transmission → Scattered signal recovery → Matched filter response

• Signal delay→ Range detection
• Doppler shift→ Speed detection
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Joint Radar-Comms System

Radar Target

Joint 

Radar-Communications

Node

Communications

Transmitter

Radar Spectrum

Communications Spectrum

Key functions:
• Sends radar pulses for target detection

• Receives a mixed signal - radar return and communications signal

• Decouples the signals

• Processes radar returns for ranging and speed
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Signal Decoupling

Successive-Interference Cancellation

Transmit
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Key step: Remove predicted radar return from the mixture
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Performance Indicators

• Communications performance: Shannon’s information rate bound

Rcom ≤ B log2

(
1 +
‖b‖2 Pcom

σ2
int+n

)

• Radar performance: estimation rate bound [D. W. Bliss, 2014 IEEE Radar
Conference]

Rest ≤
δ

2T
log2

[
1 +

σ2
proc

σ2
est

]

Spectral shape of the waveform directly influences the above per-
formance indicators!

σ2
int+n ∝ Brms σ2

est ∝
1

Brms
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Spectral-Shape Affects Performance
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Maximizing joint radar-communications performance
u controls the spectral-shape of the waveform!

maximize
u∈[0,1]N

[Rcom(u)]α [Rest(u)]1−α

subject to system constraints

Result: If u∗ is the optimal solution, then u∗ is pareto efficient
[S. Ragi, A. Chiriyath, D. Bliss, H. Mittelmann, Optimization-Online pre-print]

Estimation
rate

Comms
rate
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Spectrum: α = 0 and α = 1
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Solver Performance
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[S. Ragi, A. Chiriyath, D. Bliss, H. Mittelmann, Optimization-Online pre-print]
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Solver Performance
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Monostatic Radar

• Transmits encoded pulse sequence

a(0)

a(1) a(2) a(3)

time

u(t)

• Objective: optimize c = (a(0), . . . ,a(N))T, where |a(i)| = 1 ∀i , to
maximize signal-to-noise ratio (SNR)

SNR = cHRc

where R = M−1 � (ppH)∗, M = E
[
wwH]

• Code optimization leads to unimodular quadratic program (UQP)
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Unimodular Quadratic Program
• Ω = {x ∈ C, |x | = 1}

1-1

-i

i
Ω

• Unimodular quadratic program (UQP)

maximize
s∈ΩN

sHRs

where R ∈ CN×N is a Hermitian matrix.

• Many problems in radar and wireless communications lead to UQP
• UQP is an NP-hard problem

[S. Zhang, et. al., “Complex quadratic optimization and semidefinite programming," SIAM J. Optimization,
2006]
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Semi-Definite Relaxation (SDR)

• UQP can also be stated as (since sHRs = tr(sHRs) = tr(RssH))

maximize
S

tr(RS)

subject to S = ssH , s ∈ ΩN .

• If rank constraint is relaxed⇒ semidefinite program (SDP)

maximize
S

tr(RS)

subject to [S]k,k = 1, k = 1, . . . ,N
S is positive semidefinite.

• SDP can be solved in polynomial time
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Phase-Matching with Dominant Eigenvector

• Pick d ∈ ΩN that “phase-matches” the dominant eigenvector of R

• Time complexity: O(N3)

• Example:

If (0.2eiπ/3, 0.6eiπ/4, 0.77eiπ/5)T is the dominant eigenvector, then
d = (eiπ/3, eiπ/4, eiπ/5)T

[S. Ragi, E. K. P. Chong, H. D. Mittelmann, “Heuristic methods for designing unimodular code sequences with
performance guarantees,” ICASSP 2017.]
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Performance Bound

Result (S. Ragi, E. K. P. Chong, H. D. Mittelmann, ICASSP 2017)
If VD = dHRd and Vopt is the optimal objective value, then

VD
Vopt

≥ λN + (N − 1)λ1

λNN

N λ1 λN Bound
34 6.7 81.4 0.11
96 8.7 64.6 0.14
93 19.5 71.6 0.28
6 41.6 50.8 0.85
74 40.2 99.2 0.41
27 3 58.4 0.09
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Greedy Strategy

• Greedy solution g = (g(1), . . . ,g(N))T

g(k) = arg max
x∈Ω

[gk−1; x ]HRk [gk−1; x ],

k = 2, . . . ,N, g(1) = 1

gk = (g(1), . . . ,g(k))T

where Rk is the k × k principle sub-matrix of R.

Example: If R =

1 2 3
2 4 5
3 5 6

, then R2 =

[
1 2
2 4

]
, and R3 = R
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Performance Bound for Greedy Strategy

If the objective function is string submodular, then

gHRg ≥ (1− 1/e) max
s∈ΩN

sHRs

where (1− 1/e) ≈ 0.63
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String Submodular Functions
Monotonic functions with diminishing returns!

Input

Output
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Is UQP objective function string submodular?

f (Ak ) = AH
k Rk Ak

• f is not string-submodular⇒ UQP for any R is not string-submodular

• But f̄ (Ak ) = AH
k Rk Ak is string submodular, where R is obtained from R

via manipulating diagonal entries of R

[S. Ragi, E. K. P. Chong, H. D. Mittelmann, “Heuristic methods for designing unimodular code sequences with
performance guarantees,” ICASSP 2017.]
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Bound for greedy method

Result (S. Ragi, E. K. P. Chong, H. D. Mittelmann, ICASSP 2017)
If Tr(R) ≤ Tr(R), then

gHRg ≥
(

1− 1
e

)(
max
s∈ΩN

sHRs
)
,

where g is the solution from the greedy method.

• Time complexity of greedy method: O(N)
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Performance Comparison
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COLRO Problems

• COLRO: competing objective limited resource optimization

• COLRO problems appear naturally in many applications including
decision making in autonomous systems

• We explore novel methods to solve COLRO problems in real-time
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UAV swarm control
• Goal: control the motion of a networked swarm of UAVs while tracking a

target
• Minimizing the energy costs and maximizing the tracking performance

are conflicting objectives

Target Target’s 
trajectory

Swarm 
centroid
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COLRO formulation

• Goal: optimize the motion of UAVs to maximize target tracking
performance while minimizing the network energy costs

• Decision variables: swarm centroid Ck and Gk

min
Gk ,Ck ,k=0,..,H−1

H−1∑
k=0

E[wftrack (Gk ,Ck , χk )+

(1− w)fenergy (Gk ,Ck , χk )]

(1)

• Objective function is hard to evaluate exactly!
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COLRO cost functions

min
Gk ,Ck ,k=0,..,H−1

H−1∑
k=0

E[wftrack (Gk ,Ck , χk )+

(1− w)fenergy (Gk ,Ck , χk )]

(2)

• ftrack measures
I benefits of data fusion between a pair of UAVs - Gk
I benefits of having the swarm staying close to the target - Ck

• fenergy measures
I benefits of using the communications network sparingly - Gk
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Solution Approach

• Nominal belief-state optimization - an approximate dynamic programming
approach
I Replace future noise variables with “nominal” values
I Replace the expectation with “nominal” trajectory of the posterior distribution

into the future

• Apply receding horizon control approach

min
Gk ,Ck ,k=0,..,H−1

H−1∑
k=0

[wf̃track (Gk ,Ck , ψk )+

(1− w)f̃energy (Gk ,Ck , ψk )]

(3)

where f̃track and f̃energy are deterministic approximations.

• Mixed integer nonlinear program - solution is obtained via a commercial
solver Knitro

COLRO problems Hans D. Mittelmann MATHEMATICS AND STATISTICS 31 / 36



Converting G∗k and C∗k to UAV kinematic controls

Desired centroid

Repulsive 
force to avoid 
collisions

Attractive force 
to form desired 
network

Attractive force 
toward centroid
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3 UAVs and 1 target (H = 6)
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Performance against centralized approach (3 UAVs)
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Future Work

• Incorporate “belief consensus” into the COLRO framework
I Running consensus algorithms leads to increased network energy costs, but

improves cooperativeness of the agents
I Belief consensus can be time consuming - we will develop fast heuristic

approaches

• Dealing with heterogeneous data from sensors on-board the agents, e.g.,
imagery, video, and audio. We need new data fusion techniques, e.g.,
fusion in feature space
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Thank you for your attention!

For papers see http://plato.asu.edu/papers.html no.s 142-152
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