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A QAP with four locations and facilities

Thickness of connections indicates level of flow
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A Mathematical Formulation of the Quadratic Assighment
Problem

Mathematically, we can formulate the problem by defining two n
by n matrices:
a flow matrix F whose (i,]) element represents the flow
between facilities i and j,
and a distance matrix D whose (1,]) element represents the
distance between locations i and j.

We represent an assignment by the vector p, which is a
permutation of the numbers 1, 2, ... , n. p(j) is the location to
which facility j is assigned.

With these definitions, the QAP can be written as
mn T
min ) Y fijdpiap()

_"PEH =1 j=1



Computing Lower Bounds for QAPs

via SDP relaxations and matrix splitting
Summary of results from

H. D. Mittelmann, J. Peng, Estimating Bounds for Quadratic
Assignment Problems Associated with the Hamming and Manhattan
Distance Matrices based on Semidefinite Programming,

SIAM J. Optim.20, 3408-3426 (2010)

J. Peng, H. D. Mittelmann, X. Li, A New Relaxation Framework for
Quadratic Assignment Problems based on Matrix Splitting,
Math. Prog. Comp. 2, 59-77 (2010)

X, Wu, H. D. Mittelmann, X. Wang, and J. Wang, On Computation of
Performance Bounds of Optimal Index Assignment,
IEEE Trans. Info. Theory 59, 3229-3233 (2011)

Work partly supported by AFOSR under grant FA9550-12-1-0153.
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Quadratic Assignment Problem (QAP)
G
(QAP)  min, _ Tr(AXBX")
I1: the set of permutation matrices.

Both A and B are symmetric with nonnegative elements

e First introduced by Koopmans and Beckmann [1957]

e Many applications from various fields: facility
location, communication...[QAPLIib]

e Hundreds of papers dedicated to QAPs as listed in a
recent survey by Hahn et al. [2007]



Existing approaches for QAPs
—

e Heuristics [Hahn et al. 07]

Genetic algorithm, tabu search, simulated annealing

e EXxact methods

Branch&bound, cutting planes [ Pardalos et al. 97, Brixius
and Anstreicher 01, Hahn et al. 01,02]

Needs to solve some relaxed problem in the process to get
a lower bound

The efficacy of the relaxation model plays a crucial role



Cheap Relaxations of QAPs
—

e Cheap relaxations that can be solved quickly
- GLB reformulation [Gilmore 62 and Lawler 63],
- QP relaxation [ Anstreicher and Brixius 01],

- Spectral bound based on eigenvalues and
projection [ Hadley-RendI|-Wolkowicz 92]

- Weak bounds have been observed, especially
when n becomes large

- Resulting in a huge number of nodes in a B&B
approach



Expensive QAP Relaxations

- LP relaxation based on ILP reformulation [ Adams
and Sherali 86, 90, Hahn et al. 98,01]

o Zijkl — ikx j1 with extra constraints on z

- SDP relaxation based on matrix vectorization and
Kronecker product [ Zhao et al.98, Rend| et al.03]

Let x =vector(X) and apply the standard SDP relaxation

to the matrix xx’ with extra constraints on the matrix elements.

- Tight bound but involves intensive computation
e Out of the question for QAP instances of size n=50



Efficacy VS Tightness
-

Efficacy of GLB Grey area

the model /./,QP /

- RLT

e RLT: reformul. =9 ML
based on lifting N
e ML: matrix Séeo .

||ft|ng Tightness of the bound



Motivation and Observation
e

e Motivation:
- find cheap relaxations that yield strong bounds.

e Observations:

— Most relaxations are based on the binary structure of
the matrix elements, not the algebraic feature of the
permutation matrix itself!

— Specific QAPs arising from data mining have positive
semidefinite matrices and large scale problems (n=1000s)
have been solved based on SDP approaches

B0 < XBX'>0



Matrix Splitting

o .
e What to do when B is not PSD? ~
_ Split the matrix into two parts OH,AH ‘? ;

B=B'-B", BB z0.

Both XB* X! and XB~ X' are positive semidefi-
nite. Let Y = XBTX! Y = XB X!, we have

Y'Y >0



New SDP relaxations
e

e Let e be the all 1 vector and min(B) the
minimum element of B. Using the properties
of X, we derive the following relaxation

min  Tr(AY " —-Y7)) (1)
st. Y'e=XB%e, Y e=XDBe;
diag(Y ") = Xdiag(B"), Y > min(B");
diag(Y ™) = Xdiag(B™), Y > min(B™);
YT—XB™X'>=0, Y —XB X!'>o:
Xe=Xte=¢, X>0.



One Theorem
]

e Theorem: The lower bound provided by the
new SDP relaxation is always tighter than the
bound derived by SDP relaxation based on
matrix lifting in [ Ding and Wolkowicz 06].

- As observed in Ding-Wolkowicz paper, such a

bound is comparable to the strongest SDP
bounds.



Improvement and simplification

e \We could swap A and B to derive a more complex
SDP relaxation;

e Symmetries can be explored to improve the model;
e \We could simplify the SDP constraints to

Yty =0

—- Leading to certain speedup in the solving process, while
without much loss of tightness of the bound



New Splitting Schemes: |
-

e Definition: We call the matrix splitting B=B*-
B- an orthogonal splitting if B* and B- are
orthogonal to each other

- Can be derived by using the singular value
decomposition of B directly

— Additional constraints can be added based on the
orthogonality



CVX script for basic model

ones(n,1);

E = exe’;

e

I = eye(n);
[V,D] = eig(B);
Dp
Dm = max(Dp - D,zeros(n));
Bp = V*Dp*V’;

Bm = VxDm*V’ ;

Dp = sqrtm(Dp);

max (D, zeros(n));

Dm = sqrtm(Dm) ;
Rp = V*Dp;
Rm = V*Dm;



cvx_begin

variable X(n,n)

variable Yp(n,n) symmetric

variable Ym(n,n) symmetric

variable Zp(n,n)

variable Zm(n,n)

minimize( trace(A*x(Yp-Ym)) )

subject to
diag(Yp) == X*diag(Bp);
diag(Ym) == X*diag(Bm) ;
Yp*e == X*Bp*e;
Ym*xe == X*Bm*e;
tril(Yp,-1) - tril(Ym,-1) >= min(min(B));
tril(Yp,-1) >= min(min(tril(Bp,-1)));
tril(Ym,-1) >= min(min(tril(Bm,-1)));



A

4
4

cvx_end

norm(Yp + Ym,’fro’) <= norm(B,’fro’);
Zp == X*Rp;
Zm == X*Rm;
lambda_min([I,Zp’;Zp,Ypl) >= 0;
lambda_min([I,Zm’;Zm,Ym]) >= O;
lambda_min(Yp) >= O;

lambda_min(Ym) >= 0;
X >= 0;

sum(X) == 1;

sum(X’) == 1;



Numerical Results: |
]

Nug25 |18% 4665 |3% 8914 11% 23s

Nug30 |22% 11321 1% 26347 10% 72s

Tail30b | 78% 12172 | 18% 50582 15% 161s

Tail35b | 65% 24440 |(15% 141300 |22% 322s

Tail4d0b | 74% 43181 |15% 330773 |16% 763s

The relative gap is listed for comparison on tightness



Numerical Results: 2

Problem | Tail50b | Tail60b | Tail64C | Tail80b Tail100b | Tail150b
Newgap |18.4% |222% |2.4% 18.4% 22% 13.6%
Oldgap |91.2% |91.8% |51.7% |89.1% 86.3% 87.4%

All the above problems have been solved within
40 minutes
Strong bounds have been obtained for QAPs of
size up to n=256




From QAPLIB: E.D. Taillard [Taillard:91, Taillard:94]

feas.sol.

permutation/bound

TaidOb
TaibOa
TaibOb
Tai6Oa
Tai6O0b
Taib4c
Tai80a
Tai80b

TailOO0a
TailOO0Db
Tail50b

Tai2b6c¢

100
100
150
256

637250948
4938796
458821517
7205962
608215054
1855928
13515450
818415043
21052466
1185996137
498896643
44759294

544404685
4390920
381474057
5555095
494776302
1812779
10329674
683526345
16824355
961844607
435738380
43849646

(SDRMS)
(L&P)
(SDRMS)
(GLB)
(SDRMS)
(SDRMS)
(GLB)
(SDRMS)
(GLB)
(SDRMS)
(SDRMS)
(SDRMS)
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Desirable Improvements of Our Approach

there are four major ones

» Reduce memory consumption
» Cut CPU time for very large problems
» Make bounds guaranteed lower bounds

» Solve large, real-life problem

All issues were addressed successfully.

Bounds in Combinatorial Optimization Hans D Mittelmann FSil MATHEMATICS AND STATISTICS 6/24



Reduce memory consumption

w/o sacrificing quality of bounds

Reason for the large memory consumption:

» Solution of the SDP relaxations via interior point methods that
employ direct numerical algebra (Cholesky decomposition)

» Problems are not necessarily sparse
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Reduce memory consumption

go iterative!

Key paper for both resource issues:

X.Y. Zhao, D.F. Sun, and K.C. Toh, A Newton-cg Augmented
Lagrangian method for Semidefinite Programming,
SIAM J. Optimization 20, 1737-1765 (2010)

Code available from K.C. Toh

This needed to be combined with CVX in place of SDPT3/SeDuMi
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Cut CPU time for very large problems

go iterative!

The Newton-cg method is also faster, requiring fewer and cheaper
iterations compared with the IPM

Example to be given with real-life problem in next section
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Compute guaranteed bounds

in case SDP solved incompletely

A key paper is here:

C. Jansson, D. Chaykin, and C. Keil, Rigorous error bounds for the
optimal value in semidefinite programming,

SIAM J. Numerical Analysis, 46 (2007/08), 188-200.

» Both rigorous lower and upper bounds computed
» Employs interval-arithmetic ideas

» Minor post-processing effort
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A real-life problem from communications

optimal index assignment

» In communication systems index assignment is the problem of
labeling source codewords by binary integer numbers (channel
codewords)

» For a source code of fixed integer rate n, there are 2,,X'n, = (2n,; 1)
distinct index assignments

» In the presence of channel errors the overall system performance
does depend on the index assignment

» Channel-optimized index assignment of source codewords is the
simplest way of improving the system error resilience
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A real-life problem from communications

optimal index assignment

>

Source codewords that are distant from one another in code
space should be indexed by binary numbers of large Hamming
distances

A basic element of a signal compression and communication
system is the quantizer Q, either scalar or vector.

We focus on index assignment of vector quantizers (VQ) for their
superior source coding performance

A vector quantizer Q : 9 — {c4,Cp,--- ,Cn} maps a continuous
source vector x € R? to a codeword ¢; € ®9 in the VQ codebook
C ={cq,Co, - ,cn} by the nearest neighbor rule.

The index | rather than the codeword ¢; itself is transmitted via the
channel. Upon receiving i correctly, the VQ decoder can
reconstruct X from ¢; by inverse quantizer mapping Q'
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A real-life problem from communications

optimal index assignment

» Typically, the size N of the codebook C is made an integer power
of two, N = 2" so that the codeword index i is a binary number of n
bits. An index assignment of C is a bijection map = : C + {0,1}".

» If in the event of a transmission error an index 7(c;) is received as
m(c;), an input vector X such that w; = Q(x) will be reconstructed
as w;, incurring an extra channel distortion d(c;, ¢;) that does
depend on index assignment .

» Let P(y|:) be the probability of transmitting index « but receiving
index 3, and P(c;) be the prior probability of the codeword c;.
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A real-life problem from communications

optimal index assignment

» Given an index assignment «, the expected channel distortion is
) N N
dr = _P(ci) Y P(r(w)ln(c))d(c;, c))
=1 j=1

» Adopting the common probability model of binary symmetric
channel (BSC), we have

P(r(w))|m(c;)) = (1 — p)n—h(ﬂ(m)m(ci))ph(ﬁ(Wj)m(ci))

p the BSC crossover probability, and h(-, -) Hamming distance.

» To minimize the expected channel distortion d,. one needs to find
an index assignment defined by the objective function

N N
T« = arg min Z P(C,’) Z(‘] — p)n_h(ﬂ'(Wj)a77(ci))ph(77(VVj)77T(ci))d(ci7 cj)
=1 J=1
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A real-life problem from communications

optimal index assignment
For convenience, we rewrite in matrix form. Let

» W = diag(P(c1), P(co), -+, P(cn)) be the diagonal matrix
consisting of prior probabilities of the VQ codewords,

» B = {(1— p)""i)phlidy, ;n1<jcn be the symmetric matrix
whose elements B(/, f) are the codeword transition probabilities
P(m(w;)|m(c;)) due to BSC bit errors of probability p,

» D = {d(c;,¢j) }1<i<n,1<j<n be the symmetric distance matrix
between pairs of codewords, and

» X be the N x N permutation matrix to specify .
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A real-life problem from communications

optimal index assignment

» Then,

N N
(_)'7T — Z P(C,’) Z{XBXT},’,/d(C,’, Cj)
=1 j=1

— trace(WXBX'D)
= trace(DWXBX')
Symmetrizing i
D=DW+D'W'".
we finally have

1 .
d. = Etrace(DXBXT)

A quadratic assignment problem!
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A real-life problem from communications

optimal index assignment

» Due to the wide use of VQ in image coding, we present a case
study on image VQ index assignment. A training set of 18 natural
Images is used to design 16-dimensional vector quantizers of
various fixed integer rates n.

» We consider the general case (multiple bit errors) or we assume
the BSC channel crossover probability p to be sufficiently small
and consider only one bit errors This simplifies the codeword
transition probability expression to

P(r(w)|r(ci)) = (1 —p)" 'p

and consequently,
B=(1—-p)" 'pA

where A is the adjacency matrix of the n-dimensional hypercube.
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Table: Different lower and upper bounds

One bit errors

PB

GLB

SDP

ILS

gap

NBC

gap

O© 00 NO O3

102156
42807
<0
<0
<0

84784
58617
45503
43942
38156

304551
289883
242657
199959
193271

358984
349337
334360
294756
291314

0.71 dB
1.06 dB
1.39 dB
1.69dB
1.78 dB

470147
530994
592534
650936
/19776

1.88 dB
2.62 dB
3.89 dB
5.14 dB
5.71 dB

Bounds in Combinatorial Optimization

Multiple bit errors

PB

GLB

SDP

ILS

gap

NBC

gap

O© 00 NO O3>

1146
614
<0
<0
<0

884
819
484
465
416

2891
2834
2412
2020
1931

3608
3734
3347
2984
2937

0.96 dB
1.20 dB
1.42 dB
1.69 dB
1.82 dB

4685
9273
5871
6424
7072

2.10dB
2.70dB
3.86 dB
5.02 dB
5.64 dB
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Kissing Number Problem

» In geometry, the kissing number 7, is the maximum number of spheres
of radius 1 that can simultaneously touch the unit sphere S"~! in n-
dimensional Euclidean space.

12 or 137

SIR IsaAAC NEWTON DAvVID GREGORY




What is known in low dimensions?

» 7, = 2, T = 6 is trivial.

» 73 = 12, Schiitte and van der Waerden (1953).

» 75 = 240, 1oy = 196560, Odlyzko, Sloane, and Levenshtein (1979).
» 7, = 24, Musin (2003).

» Goal:
Find good upper bounds using semidefinite programming.




Which SDP bounds have been found?

» Previous best upper bounds from 1979-2007

» In 2008 paper by C. Bachoc and F. Vallentin with moderately
iImproved bounds up to dimension 10.

» Use of regular (double precision) computation prevented better
results.

» New paper:
H.D. Mittelmann and F. Vallentin,
High Accuracy Semidefinite Programming Bounds for Kissing
Numbers,
Exp. Math. 19, 174-179 (2010)

» Use of multiple precision SDP solvers (SDPA/CSDP)
» Computations tedious/tricky
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Which SDP needs to be solved?

» Kissing number is stability number of infinite graph

» stability number is bounded by Lovasz theta number

» Lovasz theta number is solution of SDP

» graph [(S"1,(0,7/3)) on vertexset S" 1 = {x cR": x - x =1}
» edges when angular distance < 7 /3, inner product > 1/2

» bounds from this SDP strengthened using symmetries and
Lasserre hierarchy

9(F(S"1,(0,7/3))) = inf{)\ . Kec(S™ x 81,
K(x,x)=X—1, forall x e 8",
K(x,y) < —1, forall x,y € S
with x - y < 1/2},

» C(S"1 x 8" 1), cone of positive definite Hilbert-Schmidt kernels
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Our 1improved bounds as recorded 1n Wikipedia

n lower old bd vear our bd
5 40 45 2008 44
7 126 135 2008 134
9 306 366 2008 364
10 500 567 2008 554
11 582 915 1979 870
12 840 1416 1979 1357
13 1130 2233 1979 2069
14 1582 3492 1979 3183
15 2564 5431 1979 4866
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Our 1mproved bounds as recorded 1n Wikipedia

n lower old bd year our bd
16 4320 8312 2007 7355
17 5346 12210 2007 11072
18 7398 178777 1979 16572
19 10668 25900 1994 24812
20 17400 37974 1979 36764
21 27720 568501 1994 54584
22 49896 865377 1979 82340
23 93150 128095 1994 124416
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From Wikipedia

Lower and our upper bounds

10

=
Q,

=
=
\

=
Q,

Kissing Number

=
Q

—————————————————————————————————————————————————————————————

=
Q.

105" 10 15 20 25
Dimension
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Computing upper bounds for kissing numbers and binary codes

High precision SDP bounds for binary codes
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High precision SDP bounds for binary codes

D. C. Gijswijt, H. D. Mittelmann, and A. Schrijver,
Semidefinite code bounds based on quadruple distances,
IEEE Transactions on Information Theory 58(5), 2697-2705 (2012)

» A(n,d) is maximum number of binary words of length n, any two
having Hamming distance at least d

v

Classical Delsarte bound yields huge SDP which can be reduced
to small LP

v

In 2005 Schrijver generalized to SDPs of sets of size at most 3

v

They can be reduced to small SDPs with block-diagonalization

v

New work generalizes to quadruples of words. Reduced SDPs are
still large

v

They are ill-conditioned and require high precision
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known | known| new
n| d| lower| upper| upper| A4(n,d)
bound | bound | bound
18| 6 512 680 673 673.005
197 6 1024| 1280 1237 | 1237.939
200 6] 2048 | 2372 2279 2279.758
231 6| 8192 13766 | 13674 || 13674.962
19| 8 128 142 135 135.710
201 8 256 274 250 |  256.000
20| 8| 4096| 5477| 5421 5421.499
200 8| 4096 | 9672 9275| 9275.544
271 8 8192 17768 | 17099 | 17099.644
21110 42 48 47 47.007
22110 64 87 84 84.421
24110 128 280 208 |  268.812
25 10 192 503 466 |  466.809
26| 10 384 886 836 836.669
27110 512 1764| 1585 | 1585.071
28110 1024 | 3170 2817| 2817.313
25|12 52 56 55 55.595
26|12 64 98 96 96.892




THE END

Thank you for your attention

Questions or Remarks?
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