Next: About this document ...
Up: Sufficient Optimality for Discretized
Previous: Conclusion
-
- 1
-
N. Arada, J.-P. Raymond, and F. Troltzsch,
On an augmented Lagrangian SQP method for a class of optimal control
problems in Banach spaces, to appear.
- 2
-
J.F. Bonnans,
Second-order analysis for control constrained optimal control problems of
semilinear elliptic systems,
Appl. Math. Optim., 38, (1998), 303-325.
- 3
-
Ch. Buskens and H. Maurer,
SQP-methods for solving optimal control problems with control and state
constraints; adjoint variables, sensitivity analysis, and real-time
control,
J. Comp. Appl. Math. 120, (2000), 85-108.
- 4
-
E. Casas, F. Troltzsch, and A. Unger,
Second order sufficient optimality conditions for a nonlinear elliptic
control problem,
J. Anal. Appl., 15, (1996), 687-707.
- 5
-
E. Casas, F. Troltzsch, and A. Unger,
Second order sufficient optimality conditions for some state-constrained
control problems of semilinear elliptic equations,
to appear in SIAM J. Control Optim.
- 6
-
A.L. Dontchev, W.W. Hager, A.B. Poore, and B. Yang,
Optimality, stability, and convergence in optimal control, Appl. Math.
Optim., 31, (1995), 297-326.
- 7
-
R. Fourer, D.M. Gay, and B.W. Kernighan,
AMPL: A modeling language for mathematical programming,
Duxbury Press, Brooks/Cole Publishing Company, Pacific Grove, CA, 1993.
- 8
-
H. Goldberg and F. Troltzsch,
Second order sufficient optimality conditions for a class of nonlinear
parabolic boundary control problems,
SIAM J. Control Optim., 31, (1993), 1007-1025.
- 9
-
H. Goldberg and F. Troltzsch,
On a Lagrange-Newton method for a nonlinear parabolic boundary
control problem,
Optim. Meth. Software, 8, (1998), 225-247.
- 10
-
M. Heinkenschloss,
SQP interior-point methods for distributed optimal control problems,
to appear in Encyclopedia of Optimization, P. Pardalos and C. Floudas
(eds.), Kluwer Academic Publishers.
- 11
-
A.D. Ioffe,
Necessary and sufficient conditions for a local minimum, part 3: Second order
conditions and augmented duality,
SIAM J. Control Optim., 17, (1979), 266-288.
- 12
-
K. Ito and K. Kunisch,
Augmented Lagrangian-SQP methods for nonlinear optimal control problems
of tracking type,
SIAM J. Control Optim., 34, (1996), 874-891.
- 13
-
K. Ito and K. Kunisch,
The Newton algorithm for a class of weakly singular optimal control
problems,
to appear in SIAM J. Optim.
- 14
-
K. Malanowski,
Sufficient optimality conditions for optimal control problems subject to
state constraints,
SIAM J. Control Optim., 35, (1997), 205-227.
1994.
- 15
-
H. Maurer,
First and second order sufficient optimality conditions in mathematical programming
and optimal control,
Math. Programming Study, 14, (1981), 163-177.
- 16
-
H. Maurer and H.D. Mittelmann,
Optimization techniques for solving elliptic control problems with control
and state constraints. Part I: Boundary control,
Comp. Optim. Appl., 16, (2000), 29-55.
- 17
-
H. Maurer and H.D. Mittelmann,
Optimization techniques for solving elliptic control problems with control
and state constraints. Part II: Distributed control,
to appear in Comp. Optim. Appl.
- 18
-
H.D. Mittelmann and H. Maurer,
Solving elliptic control problems with interior and SQP methods: control
and state constraints,
J. Comp. Appl. Math. 120, (2000), 175-195.
- 19
-
H.D. Mittelmann,
Verification of Second-Order Sufficient Optimality Conditions
for Semilinear Elliptic and Parabolic Control Problems,
to appear in Comp. Optim. Appl.
- 20
-
H. Maurer and S. Pickenhain,
Second-order sufficient conditions for control problems with mixed
control-state constraints,
J. Optim. Theory Appl., 86, (1995), 649-667.
- 21
-
J.-P. Raymond and F. Troltzsch,
Second order sufficient optimality conditions for nonlinear parabolic
control problems with state constraints, to appear.
- 22
-
Th.H. Robey and D.L. Sulsky,
Row ordering for Sparse QR Decomposition,
SIAM J. Matrix Anal. Applic., 15, (1994), 1208-1225.
- 23
-
K. Schittkowski,
Numerical solution of a time-optimal parabolic boundary-value control
problem,
J. Optim. Theory Appl., 27, (1979), 271-290.
- 24
-
V.H. Schulz (ed.),
SQP-based direct discretization methods for practical optimal control
problems, J. Comp. Appl. Math. 120, (2000) (special issue).
- 25
-
A.R. Shenoy, M. Heinkenschloss, and E.M. Cliff,
Airfoil design by an all-at-once method,
Intern. J. Comp. Fluid Dynam., 11, (1998), 3-25.
- 26
-
P. Spellucci,
Numerische Verfahren der nichtlinearen Optimierung,
Birkhäuser-Verlag, Basel, 1993.
- 27
-
R.J. Vanderbei and D.F. Shanno,
An interior-point algorithm for nonconvex nonlinear programming,
Comp. Optim. Appl., 13, (2000), 231-252.
- 28
-
S. Volkwein,
Distributed control problems for the Burgers equation,
to appear in Comp. Optim. Applic.
- 29
-
S. Volkwein,
Application of augmented Lagrangian-SQP methods to optimal control
problems for the stationary Burgers equation,
to appear in Comp. Optim. Applic.
- 30
-
S. Volkwein,
Mesh-Independence for an Augmented Lagrangian-SQP Method in
Hilbert Spaces,
to appear in SIAM J. Control Optim.
- 31
-
V. Zeidan,
The Riccati equation for optimal control problems with mixed state-control
constraints: Necessity and Sufficiency, SIAM J. Control Optim., 32, (1994), 1297-1321.
Hans Mittelmann
2000-08-31