next up previous
Next: About this document ... Up: paper Previous: Conclusion

Bibliography

1
M. Bergounioux, M. Haddou, M. Hintermüller and K. Kunisch, ``A comparison of interior point methods and a Moreau-Yosida based active set strategy for constrained optimal control problems'', Preprint, Université d`Orléans, Orléans, France, 1998.

2
M. Bergounioux and K. Kunisch, ``Augmented Lagrangian techniques for
elliptic state constrained optimal control problems'', SIAM J. Control Optim., vol. 35, pp. 1524-1543, 1997.

3
M. Bergounioux, K. Ito and K. Kunisch, ``Primal-dual strategy for constrained optimal control problems'', Karl-Franzens-Universität Graz & Technische Universität Graz, Spezialforschungsbereich 'Optimierung und Kontrolle', Bericht Nr. 117, 1997.

4
F. Bonnans, ``Second order analysis for control constrained optimal control problems of semilinear elliptic systems'', Applied Mathematics and Optimization, vol. 38, pp. 303-325, 1998.

5
F. Bonnans and E. Casas, ``Optimal control of semilinear multistate systems with state constraints'', SIAM J. Control and Optimization, vol. 27, pp. 446-455, 1989.

6
F. Bonnans and E. Casas, ``An extension of Pontryagin's principle for state-constrained optimal control problems of semilinear elliptic equations and variational inequalities'', SIAM J. on Control and Optimization, vol. 33, pp. 274-298, 1995.

7
N. Bourbaki, ``Integration'', Chapter 9, Hermann, Paris, 1963.

8
A. Cañada, J.L. Gámez and J.A. Montero, ``Study of an optimal control problem for diffusive nonlinear elliptic equations of logistic type'', SIAM J. on Control and Optimization, vol. 36, pp. 1171-1189, 1998.

9
E. Casas, ``Boundary control with pointwise state constraints'', SIAM J. Control Optim., vol. 31, pp. 993-1006, 1993

10
E. Casas, F. Tröltzsch and A. Unger, ``Second order sufficient optimality conditions for a nonlinear elliptic control problem'', J. for Analysis and its Applications, vol 15, pp. 687-707, 1996.

11
E. Casas, F. Tröltzsch and A. Unger, ``Second order sufficient optimality conditions for some state constrained control problems of semilinear elliptic equations'', Fakultät für Mathematik, Technische Universität Chemnitz, Preprint 97-19, to appear in SIAM J. Control Optim.

12
A.R. Conn, N.I.M. Gould, and Ph.L. Toint, LANCELOT, A Fortran Package For Large-Scale Nonlinear Optimization (Release A), Springer Series in Computational Mathematics, vol. 17, (Springer Verlag, Heidelberg, 1972).

13
R. Fourer, D. M. Gay, and B. W. Kernighan, ``AMPL: A modeling Language for Mathematical Programming'', Duxbury Press, Brooks-Cole Publishing Company, 1993

14
P.E. Gill, W. Murray, and M.A. Saunders, SNOPT: An SQP algorithm for large-scale constrained optimization, Report SOL 97-3, Department of EESOR, Stanford University (1997).

15
M. D. Gunzburger, L. Hou, and T. P. Svobodny, ``Finite element approximations of an optimal control problem associated with the scalar Ginzburg-Landau equation'', Comput. Math. Appl., vol. 21, no. 2-3, pp. 123-131, 1991.

16
M. Heinkenschloss and L. N. Vicente, ``Analysis of inexact trust-region interior-point SQP algorithms'', TR95-18, Department of Computational and Applied Mathematics, Rice University, 1995.

17
R. Hettich, A. Kaplan and R. Tischatschke, ``Regularized penalty methods for ill-posed optimal control problems with elliptic equations. Part I: Distributed control with bounded control set and state constraints'', Control and Cybernetics, vol. 26, pp. 5-27, 1997.

18
R. Hettich, A. Kaplan and R. Tischatschke, ``Regularized penalty methods for ill-posed optimal control problems with elliptic equations. Part II:
Distributed and boundary control with unbounded control sets and state constraints'', Control and Cybernetics, vol. 26, pp. 29-43, 1997.

19
K. Ito and K. Kunisch, ``Augmented Lagrangian-SQP methods for nonlinear optimal control problems of tracking type'', SIAM J. Optim., vol 6, pp. 96-125, 1996.

20
K. Kunisch and S. Volkwein, ``Augmented Lagrangian-SQP techniques and their approximations'', Contemporary Mathematics, vol. 209, pp. 147-159, 1997.

21
A. Leung and S. Stojanovic, ``Optimal control for elliptic Volterra-Lotka equations'', J. Math. Analysis and Applications, vol. 173, pp. 603-619, 1993.

22
J.L. Lions, ``Optimal control of systems governed by partial differential equations'', Grundlehren der mathematischen Wissenschaften, Vol. 170, Springer-Verlag, Berlin, New York, 1971.

23
H. Maurer and H.D. Mittelmann, Optimization techniques for solving elliptic control problems with control and state constraints. Part 1: Boundary control, to appear in Computational Optimization and Applications.

24
H.D. Mittelmann and P. Spellucci, ``Decision Tree for Optimization Software'', World Wide Web, http://plato.la.asu.edu/guide.html (1999).

25
H.D. Mittelmann and H. Maurer, ``Solving elliptic control problems with interior point and SQP methods: Control and state constraints'', to appear in the special issue ''SQP-based direct discretization methods for practical optimal control problems'' of J. Comp. Appl. Math., (V. Schulz, ed.), Elsevier, 1999.

26
B.A. Murtagh and M.A. Saunders, MINOS 5.4 User`s Guide, Report SOL 83-20R, Department of Operations Research, Stanford University (Revised February 1995).

27
S. Rotin, ``Konvergenz des Proximal-Punkt-Verfahrens für inkorrekt gestellte Optimalsteuerungsprobleme mit partiellen Differentialgleichungen, Dissertation, Dept. of Mathematics, Universität Trier, Germany, 1999.

28
S. Stojanovic, ``Optimal damping control and nonlinear elliptic systems'', SIAM J. Control Optimization, vol. 29, pp. 594-608, 1991.

29
R. S. Vanderbei and D. F. Shanno, ``An interior point algorithm for nonconvex nonlinear programming'', to appear in Computational Optimization and Applications.



Hans D. Mittelmann
2000-10-06