Next: About this document ...
Up: No Title
Previous: Conclusion
-
- 1
-
L. Ahlfors, Complex Analysis, 2nd ed., McGraw-Hill,
New York, 1966.
- 2
-
K. E. Atkinson, An Introduction to Numerical Analysis, 2nd
ed., John Wiley, New York, 1978.
- 3
-
R. Baltensperger and J.-P. Berrut,
The linear rational collocation method, to appear in J. Comput. Appl. Math.
- 4
-
J.-P. Berrut, The barycentric weights of rational interpolation
with prescribed poles, J. Comput. Appl. Math. 86 (1997), 45-52.
- 5
-
J.-P. Berrut and H. Mittelmann,
Lebesgue constant minimizing linear rational
interpolation of continuous functions over the interval, Computers
Math. Applic. 33 (1997), 77-86.
- 6
-
J.-P. Berrut and H. Mittelmann, Matrices for the direct
determination of the barycentric weights of rational interpolation,
J. Comput. Appl. Math. 78 (1997), 355-370.
- 7
-
J.-P. Berrut and H. Mittelmann,
The linear rational collocation method with iteratively optimized poles for two-point
boundary value problems, submitted for publication.
- 8
-
R. Bulirsch and H. Rutishauser, Interpolation und genäherte
Quadratur, Sauer R., Szabó I., Hsg., Mathematische Hilfsmittel des
Ingenieurs, Grundlehren der math. Wissenschaften
Bd. 141, Springer, Berlin-Heidelberg, 1968, pp. 232-319.
- 9
-
A. Corana, M. Marchesi, C. Martini, and
S. Ridella, Minimizing multimodal functions of continuous variables with
the ``Simulated Annealing'' algorithm, ACM Trans. Math. Software 13 (1987), 262-280.
- 10
-
P. R. Graves-Morris, Efficient reliable rational
interpolation, in: Padé
Approximation and its Applications, Amsterdam, 1980 M. G. de Gruin and H. van Rossum, eds.,
LNM 888, Springer-Verlag, Berlin-Heidelberg-New York, 1981, pp. 28-63.
- 11
-
P. Hemker, A Numerical Study of Stiff Two-Point Boundary
Problems, Math. Centrum, Amsterdam, 1977.
- 12
-
P. Henrici, Essentials of Numerical Analysis, John Wiley, New
York, 1982.
- 13
-
P. Henrici, Applied and Computational Complex
Analysis, Vol. 1, John Wiley, New York, 1974.
- 14
-
E. H. Kaufman, Jr., D. J. Leeming, and G. D. Taylor, Uniform rational
approximation by differential correction and Remes-differential correction,
Int. J. Numer. Meth. Engin. 17 (1981), 1273-1278.
- 15
-
Matlab Robust Control User's Guide, The Mathworks Inc., Natick MA, 1999.
- 16
-
T. J. Rivlin, An Introduction to the Approximation of
Functions, Dover, 1981.
- 17
-
H. E. Salzer, Lagrangian interpolation at the Chebyshev points
,
; some unnoted advantages, The
Computer J. 15 (1972), 156-159.
- 18
-
C. Schneider, W. Werner, Some new aspects of rational
interpolation, Math. Comp. 47 (1986), 285-299.
- 19
-
J. Stoer, Einführung in die Numerische Mathematik I, 4. Aufl.,
Springer, Berlin, 1972.
- 20
-
H. Werner, Algorithm 51: A reliable and numerically stable program for
rational interpolation of Lagrange data, Computing 31 (1983),
269-286.
- 21
-
J. L. Zhou, A. L. Tits and C. T. Lawrence, User's guide
for FFSQP version 3.7: A
FORTRAN code for solving optimization problems, possibly minimax, with
general inequality constraints and linear equality constraints, generating
feasible iterates, TR-92-107r5, Institute for Systems Research, University of
Maryland, College Park, MD20742, USA, 1997.
Hans Mittelmann
2000-05-30