Next: About this document ...
Up: paper84
Previous: Conclusions
-
- 1
-
A. Barclay, P.E. Gill, and J. B. Rosen,
``SQP methods and their applications to numerical optimal control'',
in Variational Calculus, Optimal Control and Applications, W.H.
Schmidt, K. Heier, L. Bittner, and R. Bulirsch(Eds.), vol. 124 Int.
Series Numer. Mathematics, Basel, Birkhäuser, 1998, pp. 207-222.
- 2
-
M. Bergounioux, M. Haddou, M. Hintermüller and K. Kunisch,
``A comparison of interior point methods and a Moreau-Yosida based
active set strategy for constrained optimal control problems'',
Preprint, 1998.
- 3
-
M. Bergounioux and K. Kunisch,
``Augmented Lagrangian techniques for
elliptic state constrained optimal
control problems'',
SIAM J. Control Optim., vol. 35, pp. 1524-1543, 1997.
- 4
-
J.T. Betts,
``Issues in the direct transcription of optimal control problems to sparse
nonlinear programs'',
in Control Applications of Optimization, R. Bulirsch and D. Kraft, eds,
vol. 115, Int. Series Numer. Mathematics, Basel, Birkhäuser, 1994, pp. 3-17.
- 5
-
J.T. Betts and W.P. Huffmann,
``The application of sparse nonlinear programming to trajectory optimization'',
J. of Guidance, Control and Dynamics, vol. 14, pp. 338-348, 1991.
- 6
-
N. Bourbaki,
``Integration'', Chapter 9, Hermann, Paris, 1963.
- 7
-
C. Büskens,
``Optimierungsmethoden und Sensitivitätsanalyse für optimale
Steuerprozesse mit Steuer- und Zustandsbeschränkungen'',
Dissertation, Universität Münster, Institut für Numerische Mathematik,
Münster, Germany, 1998.
- 8
-
C. Büskens and H. Maurer,
``Real-time control of an industrial robot using nonlinear programming
methods'',
to appear in Automatica.
- 9
-
E. Casas,
``Boundary control with pointwise state constraints'',
SIAM J. Control Optim., vol. 31, pp. 993-1006, 1993.
- 10
-
E. Casas, F. Tröltzsch and A. Unger,
``Second order sufficient optimality conditions for a nonlinear elliptic
control problem'',
J. for Analysis and its Applications, vol 15, pp. 687-707, 1996.
- 11
-
E. Casas, F. Tröltzsch and A. Unger,
``Second order sufficient optimality conditions for some state
constrained control problems of semilinear elliptic equations'',
Fakultät für Mathematik, Technische Universität Chemnitz,
Preprint 97-19, to appear in SIAM J. Control Optim.
- 12
-
R. Fourer, D. M. Gay, and B. W. Kernighan,
``AMPL: A modeling Language for Mathematical Programming'',
Duxbury Press, Brooks-Cole Publishing Company, 1993
- 13
-
I.I. Grachev and Yu.G. Evtushenko,
``A library of programs for solving optimal control problems'',
U.S.S.R. Computational Maths. Math. Physics, vol. 19, pp. 99-119, 1979.
- 14
-
R. Hettich, A. Kaplan and R. Tischatschke,
``Regularized penalty methods for ill-posed optimal control problems with
elliptic equations.
Part I: Distributed control with bounded control set and state constraints'',
Control and Cybernetics, vol. 26, pp. 5-27, 1997.
- 15
-
R. Hettich, A. Kaplan and R. Tischatschke,
``Regularized penalty methods for ill-posed optimal control problems with
elliptic equations.
Part II:
Distributed and boundary control with unbounded control sets and
state constraints'',
Control and Cybernetics, vol. 26, pp. 29-43, 1997.
- 16
-
K. Ito and K. Kunisch,
``Augmented Lagrangian-SQP methods for nonlinear optimal control
problems of tracking type'',
SIAM J. Optim., vol 6, pp. 96-125, 1996.
- 17
-
D. Kraft,
``On converting optimal control problems into nonlinear programming problems'',
in Computational Mathematical Programming, K. Schittkowski, ed.,
NATO ASI Series F: Computer and Systems Science, vol. 15, Springer Verlag, Berlin und Heidelberg, 1985, pp. 261-280.
- 18
-
K. Kunisch and S. Volkwein,
``Augmented Lagrangian-SQP techniques and their approximations'',
Contemporary Mathematics, vol. 209, pp. 147-159, 1997.
- 19
-
J.L. Lions,
``Optimal control of systems governed by partial differential equations'',
Grundlehren der mathematischen Wissenschaften, Vol. 170, Springer-Verlag,
Berlin, New York, 1971.
- 20
-
J.L. Lions and E. Magenes,
``Non-Homogeneous Boundary Value Problems and Applications, Volume I'',
Grundlehren der mathematischen Wissenschaften, Vol. 181, Springer-Verlag,
Berlin, New York, 1972.
- 21
-
H.D. Mittelmann and P. Spellucci,
``Decision Tree for Optimization Software'',
World Wide Web, http://plato.la.asu.edu/guide.html (1998).
- 22
-
K.L. Teo, C.J. Goh and K.H. Wong,
``A Unified Computational Approach to Optimal Control Problems'',
Longman Scientific and Technical, New York, 1981.
- 23
-
R. S. Vanderbei and D. F. Shanno,
``An interior point algorithm for nonconvex nonlinear programming'',
Comput. Optim. Appl., vol. 13, pp. 231-252, 1999.
- 24
-
J. Zowe and S. Kurcyusz,
``Regularity and stability for the mathematical programming problem in
Banach spaces'',
Appl. Math. Optimization, vol. 5, pp. 49-62, 1979.
Hans D. Mittelmann
2002-11-25