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Abstract—We develop a new waveform codesign approach
for radar-communications spectral coexistence using a decision-
theoretic framework called partially observable Markov decision
process (POMDP). The POMDP framework’s natural look-
ahead feature allows us to trade-off short-term for long-term
performance, which is necessary in waveform codesign problems
with competing objectives and dynamic user needs. As POMDPs
are computationally intractable, we extend two approximation
methods called nominal belief-state optimization and random-
sampling multipath hypothesis propagation to make the codesign
approaches tractable.

I. INTRODUCTION

Spectral congestion is forcing legacy radar band users to
investigate cooperation and co-design methods with a growing
number of communications applications [1]. The codesign
of radar and wireless communications systems faces several
challenges: interference, radar, communications decoupling,
and dynamic user (radar and communications) requirements.
The studies in [2], [3] provide a detailed overview of the chal-
lenges and research directions in the “spectral” coexistence
of radar and communications. In the study in [4], the quality
of the radar return and the communications rate is mainly
determined by the waveform’s spectral shape. Moreover, one
of the critical challenges for any waveform design method
is to meet dynamic user needs. In this paper, we develop
waveform shaping methods that are adaptive and can trade-off
between competing performance objectives to address these
challenges. A waveform design method can most effectively
meet the dynamic user needs if it predicts the future user needs
and allocates the resources accordingly. Previous research has
considered waveform design for joint radar-communications
systems, for example, [5], [6]. However, existing methods
often do not meet dynamic performance requirements, as they
tend to be greedy in that they only maximize short-term per-
formance for immediate benefits. For problems with dynamic

The work of S. Doly, S. Ragi, and H. D. Mittelmann was supported in part
by the Air Force Office of Scientific Research under grant FA9550-19-1-0070.

performance requirements, long-term performance is critical
as decisions (to choose a particular waveform) at the current
time epoch may lead to regret in the future. To address these
challenges, we develop an adaptive waveform design method
for joint radar-communications systems based on the theory of
partially observable Markov decision process (POMDP) [7],
[8]. Specifically, we formulate the waveform design problem
as a POMDP [8], after which the design problem becomes
a matter of solving an optimization problem. In essence,
the POMDP solution provides us with the optimal decisions
on the waveform design parameters [9]. The optimization
problems resulting from POMDPs are hard to solve precisely;
specifically, these problems are PSPACE-complete [10]. The
optimization problems resulting from POMDP formulation
are typically reformulated as dynamic programming problems,
which allows us to apply Bellman’s principle of optimality,
leading to a plethora of approximation methods called ap-
proximate dynamic programming methods or ADP methods
as surveyed in [7]. In this study, we adopt two different ADP
approaches called nominal belief-state optimization (NBO)
[7], and random sampling multipath hypothesis propagation
(RS-MHP) [11], [12] to maximize the reward in the long
horizon decision problems. RS-MHP methods are a variant of
the existing broad class of Monte-Carlo tree search (MCTS)
methods. The POMDP framework has a natural look-ahead
feature, i.e., it can trade-off short-term for long-term perfor-
mance. This feature lets the POMDP naturally anticipate the
dynamic user needs and optimize the resources (waveforms)
to actively meet the user’s needs. Typically, one studies these
adaptive methods under “cognitive radio (radar),” which has a
rich literature. The current waveform design problem is related
to a class of problems called adaptive sensing, where POMDP
was already a proven effective framework [9], [13]. However,
this paper brings formalism to these methods by posing the
waveform design problem as a POMDP. Recently, POMDPs
were used in [14] to develop adaptive methods for “cognitive
radar,” but in a different context, where the focus was on
optimizing radar measurement times and not on waveform
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shaping.

A. Literature Review

Modern spectrum sharing techniques proposed waveform
co-design and operation as a necessary construct for joint
radar-communications [15], [16]. Various methods employ
optimization theory to select a jointly optimal waveform [17]–
[19] or jointly maximizing information criteria for radar and
orthogonal frequency-division multiplexing (OFDM) commu-
nications users to minimize mutual interference for dynamic
bandwidth allocation [20]. Other avenues for co-design have
also been investigated [21]–[30]. Most modern co-design
approaches do not take the long term needs of the system
into consideration. The proposed POMDP-based waveform
co-design framework is able to evaluate the needs of the
system into the future and trade performance in the short-term
versus the long-term.

Cognitive techniques in radar were primarily used for en-
hanced dynamic behavior in complex environments [31], [32],
but researchers have begun to look at cognitive radar as a solu-
tion to the spectral scarcity problem via radar scheduling [33]
or employing cognitive radio spectrum sensing techniques,
emitter localization, and power allocation to avoid interfer-
ence [34]–[39]. Others have investigated cognitive radar as a
solution to the spectral congestion problem [40]–[43]. Most
research efforts tend to adaptively use the spectrum to avoid
interference. Such methods are akin to the traditional spectrum
sharing solution of isolation in space, time and/or frequency,
which can limit joint system performance as opposed to a co-
design approach, where both systems cooperatively utilize the
spectrum. Co-design approaches, such as our POMDP-based
approach, show better joint system performance due to better
cooperation between systems.

Relationships between radar estimation sidelobe ambiguity
and communications channel coding were previously studied
[44]. Others have suggested specific coding techniques with
favorable properties such as finite Heisenberg-Weyl groups
[45], Golay waveforms with Doppler resilient properties [46],
and complementary sequences [47]. These approaches tend
to prioritize the performance of one system over the other,
and as such are sub-optimal in performance to most modern
co-design approaches.

OFDM was investigated as a viable option in vehicle-to-
vehicle applications [48]–[51], software-defined radio (SDR)
architectures [52], etc. However, results show conflicting
cyclic prefix requirements, data-dependent ambiguities, and
trouble mitigating peak-to-average power ratio (PAPR) for
typical radar power requirements. Researchers focused on de-
veloping joint systems that could mitigate the effects of these
problems, such as suppressing side-lobes [53], maintaining a
constant envelope [54], or reducing PAPR [55]. An OFDM
approach is fundamentally more favorable to communications
system performance and most research efforts lie in improving
radar performance to an acceptable level. However, co-design

TABLE I: Survey of Notation

Variable Description

B Total system bandwidth

Brms Root-mean-squared radar bandwidth

Bcom Communications-only subband

Prad Radar power

Ttemp Effective temperature

b Communications propagation loss

Pcom Communications power

Prad Communications power

x(t) Unit-variance transmitted radar signal

a Combined antenna gain

N Number of samples

σ2
CRLB Cramer-Rao lower bound

σ2
noise Thermal noise

σ2
proc Process noise variance

TB Time-bandwidth product

δ Radar duty factor

w Measurement noise

ζk Mean vector noise

τ Time delay to mth target

α Weighting parameter

Rcomm Communications rate

Rest Radar estimation rate

Pk Error covariance matrix

Tpri Pulse repetition interval

H Planning horizon length

approaches such as ours are more beneficial in the long-term
due to them giving both systems equal importance.

B. Key Contributions

Below are the key contributions of this study.
• We formulate the joint radar waveform codesign problem

as a POMDP.
• We extend ADP methods NBO and RS-MHP to solve

the waveform design problem posed as POMDP.
• We implement the POMDP-based waveform codesign

algorithms in simulated environments and conduct a
numerical study to quantify the impact of the planning
horizon on the performance of our methods.

A preliminary version of the parts of this paper was published
as [8]. This paper differs from the conference paper [8] in
the following ways: 1) along with the previous numerical
results in [8] we conduct an empirical study to assess the
impact of the planning horizon H in POMDP on the radar
and communications performance; 2) we extend a new ADP
approach RS-MHP [11], [12] to solve the waveform codesign
problem, and benchmark its performance against the NBO
approach we previously used in [8].
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Fig. 1: Joint radar-communications system block diagram for
SIC scenario. The radar and communications signals have two
effective channels, but arrive converged at the joint receiver.
The radar signal is predicted and removed, allowing a reduced
rate communications user to operate. Assuming near perfect
decoding of the communications user, the ideal signal can
be reconstructed and subtracted from the original waveform,
allowing for unimpeded radar access.

II. JOINT-RADAR COMMUNICATIONS PREMISE

A. Successive Interference Cancellation Receiver Model

Table I shows the notations employed in this paper. In this
study, we use an optimal multi-user receiver model called
successive interference cancellation (SIC) [2], [57] to remove
the communication signal from the radar return. Based on the
prior observations of the radar target range (or time-delay)
up to some random fluctuation (also called process noise)
nproc(t) as a zero-mean random variable we generate the radar
return. Then we subtract the predicted radar return from the
joint radar-communications signal received. After suppressing
the radar return, the receiver then decodes and removes the
communications signal from the received signals. It is this
receiver model that causes communications performance to be
closely tied to the radar waveform spectral shape. The block
diagram of the joint radar-communications system considered
in this scenario is shown in Figure 1. When applying SIC,
the interference residual plus noise signal nint+n(t), from the
communications receiver’s perspective, is given by [3], [58]

nint+n(t) = n(t) + nresi(t)

= n(t) +
√
‖a‖2 Prad nproc(t)

∂x(t− τ)
∂t

, (1)

and

‖nint+n(t)‖2 = σ2
noise + a2 Prad (2π Brms)

2
σ2

proc , (2)

where nproc(t) is the process noise with variance σ2
proc.

B. Radar Estimation Rate

To measure spectral efficiency for radar performance, we
developed a new metric recently called radar estimation rate,
which is formally defined as the minimum average data rate
required to provide time-dependent estimates of system or
target parameters, for example, target range [3], [58], [59].
The radar estimation rate is expressed as follows:

Rest = I(x;y)/Tpri, (3)

where I(x;y) is the mutual information between random
vectors x and y, and Tpri =Tpulse/δ is the pulse repetition

interval of the radar system, Tpulse is the radar pulse duration,
and δ is the radar duty factor. This rate allows construction of
joint radar-communications performance bounds, and allows
future system designers to score and optimize systems relative
to a joint information metric. For a simple range estimation
problem with a Gaussian tracking prior, this takes the form
[2], [3], [60]:

Rest = (1/2T ) log2(1 + σ2
proc/σ

2
CRLB), (4)

where σ2
proc is the range-state process noise variance and σ2

CRLB
is the Cramér-Rao lower bound (CRLB) for range estimation
given by [3], [58], [59]

σ2
CRLB =

σ2
noise

8π2B2
rms TpB Prad,rx

(5)

where σ2
noise is the noise variance or power, Tp is the radar

pulse duration, Brms is the radar waveform root mean square
(RMS) bandwidth, and Prad,rx is the radar receive power, which
is inversely proportional to the distance of the target from the
joint node. Immediately apparent is the similarity of above
equation to Shannon’s channel capacity equation [3], [58],
[59], where the ratio of the source uncertainty variance to
the range estimation noise variance forms a pseudo-signal-
to-noise ratio (SNR) term. In Eq. 4, the estimation rate
is inversely proportional to the distance of the target from
the joint node. As discussed later, we design the waveform
parameters over the planning horizon while accounting for
the varying estimation rate due to target’s motion.

C. Inner rate bounds

We measure the performance of the system with two
metrics: communications information rate bound and radar
estimation rate bound (discussed in the previous section). The
joint radar-communications performance bounds developed
in [3], [58], [59] considered only local radar estimation
error, therefore making simplified assumptions about the radar
waveform. In [4], the results were generalized to include
formulation of an optimal radar waveform for both global
radar estimation rate performance and consideration of in-
band communications users forced to mitigate radar returns.
After the SIC process, some radar residual will be left in
the communications signal (due to error in predicted target
location and actual target location). If Rest ≈ 0 is sufficiently
low, then the communications operates according to the bound
determined by the isolated communications system [2]. The
highest possible communications rate when decoding the post-
SIC received signal is given by

R̃com ≤ B log2

[
1 +

b2Pcom

σ2
noise

]
. (6)

If R̃com is sufficiently low for a given transmit power then
the communications signal can be decoded and subtracted

3
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Fig. 2: Target tracking problem scenario

completely from the underlying signal, so that the radar
parameters can be estimated without contamination,

R̃com ≤ B log2

[
1 +

b2Pcom

σ2
noise + a2 Prad (2π Brms)

2
σ2

proc

]
,

(7)
In this regime, the corresponding estimation rate bound Rest
is given by Eq. 4. An achievable rate lies within the imaginary
triangle constructed by the Eq. 4, Eq. 6, and Eq. 7.

III. PROBLEM SPECIFICATION

We consider a case study with a radar target, commu-
nications user, and the joint node, as shown in Figure 2.
We consider a single clutter condition as shown in Figure 2
where an obstacle may occlude the line-of-sight of the tar-
get from the joint node. Total clutter residue acts as extra
additive noise in the system, which causes the channel to
appear more degraded. Radar estimation rates are also reduced
(radar and communications overlap) once the clutter occludes
the target. We do not consider any external interference or
a jamming condition in this paper. We will develop our
POMDP framework for this case study, which can be easily
generalized and extended to other problem scenarios. This
particular case study allows us to show the qualitative and
quantitative benefits of POMDP in adaptive waveform design.
The key components in the waveform design algorithm based
on POMDP are shown in Figure 3. The POMDP planner
evaluates the belief-state (posterior distribution over the state
space updated according to Bayes’ rule) of the system, uses
an ADP method to solve the POMDP approximately, and
produces optimal or near-optimal decisions on waveform
parameters; details are discussed later. Our objective is to
design the shape of the waveforms over time to maximize the
system’s performance. First, we begin with a unimodular chirp
waveform exp[j(πB/T )(t2)]. We control the spectral shape
of this chirp signal to maximize joint performance. We first
sample the chirp signal and collect m samples in the frequency

domain to achieve this. Let X = (X(f1), . . . , X(fm))T be
the discretized signal in the frequency domain at frequencies
f1, . . . , fm. Let u = (u(1), . . . , u(m))T be an array of
spectral weights we will optimize as discussed below, where
u(i) ∈ [0, 1],∀i. We control the chirp signal’s spectral shape
by multiplying (i.e., dot product) the signal with the spectral
weights in the frequency domain, i.e., the resulting signal is
given by X(fi)u(i),∀i.

IV. POMDP FORMULATION FOR JOINT WAVEFORM
CODESIGN

To pose any decision making problem as a POMDP, we
need to define the POMDP ingredients, namely states, actions,
state-transition law, observations and observation law, and
reward function, in the context of the particular problem at
hand. Below is a description of the POMDP ingredients as
defined specific to our waveform design problem. Hereafter,
we model the system dynamics as a discrete event process,
where k represents the discrete time index.

States: State at time k is defined as xk = (χk, ξk, Pk),
where χk represents the target state, which includes the
location, velocity, and the acceleration of the target; and
(ξk, Pk) represents the state of the tracking algorithm, e.g.,
Kalman filter, where ξk is the mean vector, and Pk is the
covariance matrix.

Actions: Actions are the waveform spectral weights vector
uk, at time k, as defined previously.

State-Transition Law: χk evolves according to a target
motion model near-constant velocity model [9] captured by
χk+1 = Fχk + nk, where F is a transition matrix, and
nk = nproc(t = k) is the process noise described in Section
II-A, which is modeled as a Gaussian process. ξk and Pk
evolve according to Kalman filter equations. Observation
Law: zTargk = Gχk + wk (if not occluded) and zTargk = wk
(if occluded), where G is a transition matrix, and wk is the
measurement noise, modeled as a Gaussian process. Specif-
ically, wk ∼ N (0, Rk), where Rk is the noise covariance
matrix, where the entries in the matrix scale (increase) with
the distance between the joint node (or sensor node) and the
target. We assume the other state variables to be fully known.

Reward Function: The reward function rewards the deci-
sion uk taken at time k given the state of the system is xk as
defined below:

R(xk, uk) = αRest(xk, uk) + (1− α)Rcomm(xk, uk) (8)

where Rest is the radar estimation rate [4], Rcomm is the com-
munications data rate, and α ∈ [0, 1] is a weighting parameter.
The dependence of the rates on the waveform spectral weights
uk is explained as follows. Both the rates Rest(xk, uk) and
Rcomm(xk, uk) is a function of the RMS bandwidth Brms

of the waveform as can be seen from equations 4, 5, and
7. The RMS bandwidth clearly depends on the shape of the
waveform spectrum, which is determined by the waveform
spectral weights uk.

4
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Fig. 3: Adaptive waveform optimization in a dynamic environment.

Belief State: We maintain and update the posterior dis-
tribution over the state space (as the actual state is not
fully observable), also known as the “belief state” given by
bk = (bχk , b

ξ
k, b

P
k ), where bξk(x) = δ(x − ξk), bPk (x) =

δ(x − Pk), and bχk = N (ξk, Pk). Here, we know the state
of the tracking algorithm, so belief states corresponding to
these states are just delta functions, whereas the target state
is modeled as a Gaussian distribution with ξk and Pk as
the mean vector and the error covariance matrix respectively.
Our goal is to optimize the actions over a long time-horizon
(of length H) to maximize the expected cumulative reward.
The objective function (to be maximized) is given by JH =

E
[∑H−1

k=0 R(xk, uk)
]
. But, we can also write JH in terms of

the belief states as

JH = E

[
H−1∑
k=0

r(bk, uk)

∣∣∣∣∣ b0
]
, (9)

where, r(bk, uk) =
∫
R(x, uk)bk(x) dx and b0 is the initial

belief state. Let J∗
H(b) represent the optimal objective function

value, given the initial belief-state b. Therefore, the optimal ac-
tion policy at time k is given by π∗(bk) = argmaxu Q(bk, u),
where Q(bk, u) = r(bk, u)+E [J∗

H(bk+1) | bk, u] which is also
called the Q-value. A detailed description of POMDP and its
solution can be found in [7], [9]. POMDP formulations are
notorious for their high computational complexity (PSPACE-
complete [10]), particularly because it is near impossible to
obtain the above-discussed Q-value in real-time [9]. Most
ADP methods approximate the Q-value [7]. We adopt two
ADP approaches: nominal belief-state optimization (NBO) [9]
and random sampling - multipath hypothesis propagation (RS-
MHP) [11], [12].

Algorithm 1 Nominal Belief State Optimization (NBO) Al-
gorithm

Require: Find the (sub)optimal spectral weights using the
NBO approach at a discrete-time index k

1: Initialize the environment, noise intensities, process noise
matrix

2: H ← length of planning horizon
3: k ← discrete-time index
4: Initialize action vector uk to random spectral weights, and

the prior belief state is bk
5: Define the NBO objective/reward function:
JNBO(uk) ← cumulative (over planning horizon H)
weighted average of the estimation and communications
rates (see Eq. 10), where the estimation and communica-
tions rates are evaluated assuming the future target belief
states are evaluated with all noise variables collapsing to
their ”nominal values”

6: for each k do
7: Update the target belief state bk (posterior distribu-

tion) via Kalman-Bayes equations using the target state
measurements received at k

8: Solve the below NBO optimization problem to ob-
tain the (sub)optimal weights using MATLAB’s fmincon:
u∗k ← argmaxu JNBO(u)

9: Design the spectral shape of the chirp signal using
optimal weights u∗k as discussed in Section III

10: end for . k

A. POMDP Solution via NBO

With NBO approximation, the POMDP formulation leads
to the following optimization problem:

max
uk,k=0,...,H−1

H−1∑
k=0

r(b̃k, uk), (10)

5
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where b̃k, k = 0, . . . ,H − 1 is a sequence of readily available
“nominal” belief states, as opposed to bks which are random
variables, obtained from the NBO approach. In NBO, the
expectation is replaced by a sample state trajectory generated
with an assumption that the future noise variables in the
system collapse to the nominal or mean values (Figure 4),
thus making the above objective function deterministic. The
NBO method was developed to solve a UAV path optimization
problem, which was posed as a partially observable Markov
decision process (POMDP) [9]. POMDP generalizes the long
horizon optimal control problem described in [11] in that
the system state is assumed to be “partially” observable,
which is inferred via the use of noisy observations and Bayes
rules. Although the performance of the NBO approach was
satisfactory in that it allowed to obtain reasonably optimal
reward commands for the decision problem to be received,
it ignored the uncertainty due to noise disturbances, thus
leading to inaccurate evaluation of the objective function.
This challenge can be overcome by the RS-MHP approach
as discussed below.

B. POMDP solution via RS-MHP

The tree-like sampling of the states in the RS-MHP ap-
proach, as shown in figures 4 and 5, allows us to incorporate
the uncertainty of the state evolution into the decision-making
criteria, albeit with the increased computational burden com-
pared to NBO. However, the sampling approach allows us
to trade-off between the computational intensity and the
solution’s optimality (determined by our choice of the number
of samples/branches in RS-MHP). In RS-MHP approach, we
sample the probability distribution of the state of the system
(a random variable) N times at each time step and generate
a sampling tree as shown in Figure 5 (here, N = 3). To
avoid the exponential growth of the state sample nodes in this
approach, at each time step we retain only M sample states
and prune the remaining samples. If the number of the sample
states at a given time instance is less than or equal to M , we
do not perform pruning. Figure 5 shows an illustration of the
above branch pruning strategy for a scenario with N = 3
and M = 3. We prune the tree branches based on their
likeliness indices [11], [12], i.e., we retain the top M branches
at each time step with the highest sample probabilities. We
approximate the expectation with an average over the possible
state trajectories or tree branches as follows:

JRS−MHP =
1

M

M∑
i=1

(
E

[
H−1∑
k=0

r(xik, uk)

∣∣∣∣∣ b0
])

(11)

where xik represents the sample state node from the ith
trajectory at time k. Clearly, as N → ∞ and M → ∞, the
above approximation converges to the true objective function
in Eq. (9).

Algorithm 2 Random Sampling Multipath Hypothesis Prop-
agation (RS-MHP) Algorithm

Require: Find the (sub)optimal spectral weights using the
RS-MHP approach at a discrete-time index k

1: Initialize the environment, noise intensities, process and
measurement matrix

2: H ← length of planning horizon
3: k ← discrete-time index
4: N ← sampling size (as described in Section IV-B)
5: M ← retained states after pruning (as described in Eq. 11)
6: Initialize action vector uk to random spectral weights, and

the prior belief state be bk
7: Define the RS-MHP objective/reward function:
JRS−MHP (uk)← cumulative (over planning horizon H)
reward function averaged over all the possible state trajec-
tories or tree branches (see Eq. 11), where the estimation
and communications rates are evaluated assuming the
future target belief states are evaluated using the sampling
procedure discussed in Section IV-B.

8: for each k do
9: update the target belief state bk (posterior distribution)

via Kalman-Bayes equations using the target state mea-
surements received at time k

10: Solve the below optimization problem to obtain the
(sub)optimal weights using MATLAB’s fmincon: u∗k ←
argmaxu JRS−MHP (u)

11: Design the spectral shape of the chirp signal using
optimal weights u∗k as discussed in Section III.

12: end for . k
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V. SIMULATION AND RESULTS

We study the efficacy of the above-mentioned waveform
codesign methods in a scenario with two obstacles blocking
the line-of-sight (LOS) between the joint node and the radar
target as the target moves from the left to the right, as shown
in Figure 7. Furthermore, we implement the receding horizon
control approach while optimizing the decision variables over
the moving planning horizon [9]. We implement the NBO
& RS-MHP approaches to solve the joint radar waveform
optimization problem, in the above context, in MATLAB.
We use MATLAB’s fmincon [61] (an optimization tool in
MATLAB) to solve the optimization problems discussed in
the previous section. The following are the main objectives of
this numerical study.

• Study the optimal radar waveform properties.

• Study the impact of the planning horizon H on the
joint performance with respect to the estimation and the
communications rates.

• Performance comparison of NBO vs. RS-MHP ADP
approaches in the non-myopic approach (H > 1).

A. Optimal radar waveform properties

We assume that the joint radar-communications receiver
shares a single antenna front end and that the communications
signal is received through an antenna sidelobe while the radar
return is received through the same antenna mainlobe, so that
the radar and communications receive gain are not identical.
From the simulation results, the SNR in the NBO approach
is 19.1419dB, and the RS-MHP approach is 22.4310dB.

TABLE II: Parameters for Waveform Design Methods

Parameter Value

Bandwidth (B) 5 MHz

Center frequency 3 GHz

Effective temperature (Ttemp) 1000 K

Communications range 10 km

Communications power (Pcom) 1 W

Communications receiver Side-lobe gain 20 dBi

Radar antenna gain 30 dBi

Target cross section 10 m2

Target process standard deviation (σproc) 100 m

Time-bandwidth product (TB) 128

Radar duty factor (δ) 0.01

The parameters used in our simulation studies are shown in
Table II. In Figure 6 (a) we show the radar waveform spectral
autocorrelation function of optimized waveform with blending
parameter α = 0.5 and planning horizon H = 1 at a time step
k = 1. We plot the spectrum of the optimized waveform with
α = 0.5 along with the original unmasked chirp waveform
as shown in Figures 6 (b). This waveform spectrum shows
the joint radar-communications optimal and has more energy
at the bandwidth center than the sidebands. Radar waveform
spectrum with α = 0.1 and α = 1 along with the original
unmasked chirp waveform shown in Figure 8.

B. Effect of planning horizon length on the joint performance

We implement the NBO approach for H = 1 and H = 9
as shown in Figure 7. In both cases, the size of the error
confidence ellipse of the target increases when the target is oc-
cluded by the obstacles. The growth of the ellipse size visibly
reduces for H = 9 compared to H = 1. So, the non-myopic
method (H > 1) has a better capability in keeping the growth
of the target-sate uncertainty small compared to a myopic
approach (H = 1). Figure 9 shows the estimation and the
communications rates as a function of the blending parameter
α. As expected, α allows us to smoothly trade-off between the
two rates. Furthermore, in Figure 10, we plot the estimation
rate as a function of time for the above two scenarios with
H = 1 and H = 9, which shows the quantitative benefit
of a non-myopic approach (H > 1) over a myopic approach
(H = 1) in terms of the radar estimation rate. Figure 11
shows a gradual increase in the joint radar-communications
performance with increasing H as expected in a non-myopic
approach, however, the computational complexity in solving
Eq. 9 grows exponentially with H .

C. Performance comparison of NBO vs. RS-MHP ADP ap-
proaches

Here we implement the RS-MHP approach for waveform
codesign in the same simulation scenario described earlier.
Figure 12 shows the cumulative distribution of the radar

7
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(a) Radar waveform autocorrelation function of the optimized waveform with
α = 0.5 and H = 1

(b) Radar waveform spectrum with α = 0.5 and H = 1. The standard chirp
is depicted by the red line, and the optimal waveform spectrum is shown by

the blue dotted line

Fig. 6: Optimized waveform vs. the standard chirp.

estimation rates using RS-MHP and NBO methods for H = 3.
The figure clearly demonstrates that the RS-MHP approach
outperforms the NBO approach and that the performance
improves as we increase the number of samples N in the RS-
MHP approach. Figure 13 shows the average radar estimation
rates for N set to 10, 50, 100, 150, and 200 for H = 3.
The figure shows a gradual increase in the algorithm’s per-
formance (in terms of the estimation rate) with increasing N
as expected. This result also suggests that the pruning step
in RS-MHP method would degrade the performance but can
provide gains in terms of computational intensity. In summary,
our numerical study confirms that the RS-MHP’s performance
has a clear statistical edge over that of the NBO approach in
terms of the estimation rate.

VI. CONCLUSIONS
We developed a waveform codesign approach for joint-radar

communications systems using a decision-theoretic frame-
work called partially observable Markov decision processes
(POMDPs). The goal is to optimize the spectral shape of the
radar waveform over time to maximize the joint performance
of radar and communications in spectral coexistence measured
in terms of radar estimation and communications rates. As
most decision-theoretic formulations suffer from the curse
of dimensionality, we extended two approximation strategies
or approximate dynamic programming (ADP) methods to
solve the POMDP - nominal belief-state optimization (NBO)
and random sampling multipath hypothesis propagation (RS-
MHP). Our numerical study confirmed that the POMDP-
based non-myopic waveform codesign approach has a better

capability in keeping the growth of target state uncertainty
small compared to a myopic approach. We also presented
the quantitative benefits, in terms of the communications
and the radar estimation rates, of our POMDP-based non-
myopic approach against the traditional myopic approaches.
Our results also confirmed a gradual increase in the joint radar-
communications performance with increasing planning hori-
zon length, which was expected in a non-myopic approach.
Our numerical studies also confirmed that the ADP approach
RS-MHP outperformed the NBO approach in terms of the
target estimation rate.
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