30 Oct 2025====================
AMPL-NLP Benchmark
====================
(mittelmann@asu.edu)

Logfiles are at: plato.asu.edu/ftp/ampl-nlp_logs/

The (local) codes

  IPOPT-3.14.5   github.com/coin-or/Ipopt
  KNITRO-15.0    www.artelys.com/knitro/
  SNOPT-7.7      www.scicomp.ucsd.edu/~peg/
  CONOPT-4.38.1  www.conopt.com/
  WORHP-1.16     worhp.de/
  FMINCON-2024a  www.mathworks.com
  COPT-8.0.0     www.shanshu.ai/copt/
  UNO-2.0.3      github.com/cvanaret/Uno
are used to solve some medium size NLP instances coded in AMPL and run as NL files.
The sources of the AMPL scripts are a selection of:
  plato.asu.edu/ftp/ampl-nlp-source/
The codes were run in default mode and with a time limit of 2hrs on an AMD Ryzen 9 5900X (12 cores, 128GB).
==========================================================================
scaled shifted geom mean    11.6  1.94  103  38.4  11.8  37.0     1    276
 solved                       46   46   30     39   45     36    47     22
 47 problems      nv    nc IPOPT$ KNIT SNOPT CONPT WORHP MATLB  COPT   UNO
==========================================================================
arki0003        2237   2500     1    1     1     1     2     i     1     2
arki0009        6220   5924     6    1   119     8     t    36     3     i 
bearing_400   160000      0     5    3     f    73     7    11     9     t 
camshape_6400   6400  12800     3    2     8    10     5    12     1    40 
clnlbeam       59999  40000   536    1     t     3     1   162     3     t 
cont5_1_l      90600  90300    13   11     t     t    69     f     8   844 
cont5_2_1_l    90600  90300    35   16     t  5902    65    27     3   341 
cont5_2_2_l    90600  90300    42   27     t  6875   429     t    19   880 
cont5_2_3_l    90600  90300    47   12     t     t   512     f    20     t 
cont5_2_4_l    90600  90300    12   10   716    45   154    77     8  1039 
corkscrw       44997  35000    28    1    16   272    33     i     3  3195 
dirichlet_120  53881    241   106   80     t  1209   315     i    41     t 
dtoc1nd         6705   4470     3    1    27    12     8    14     1   111 
dtoc2          64950  38970  2076    3  1493    74     5  2766     4     t 
elec_400        1200    400    36   21    26     4    10    32    13     i 
ex1_160        50562  25281     1    1   103   129     4    15     2     t 
ex1_320       203522 101761     7    4  2668   320    31    35    10     t 
ex4_2_160      51198  25917     2    1    79   109    11    39     1     t 
ex4_2_320     204798 103037     7   11  1589  2634   121   250     6     t 
ex8_2_2         7510   1943     1    1    12     2     5     7     1     1 
ex8_2_3        15636   3155     1    1    36     3     4     9     1     3 
gasoil_3200    32001  31998    69    8    33     4     2    77     1     t 
henon_120      32401    241   131   75     t  1261    74     i    15     i 
lane_emden_120 57721    241   116   36     t   861   131   408    16  2017 
marine_1600    38415  38392     3    1     f    54    98    14     1     t 
NARX_CFy       43973  46744   938    i     t     f   117  1070    17     t 
nql180        162001 130080  2050    7     f     t    27     f     8     t 
optmass        60006  50005     7    3    24    11     1    20     1  2131 
pinene_3200    64000  63995     7    1  1233    11   108     f     1     t 
qcqp500-3c       500    120   769    1   337    64   539    42     2   382 
qcqp500-3nc      500    120   143    1    24    96   216    37     1    26 
qcqp750-2c       750    138   281    1  1693   184   176   174     5  1441 
qcqp750-2nc      750    138   543    1    67   133    20   113     5    69 
qcqp1000-1nc    1000    154    20    3   149    15   831    82     6    24 
qcqp1000-2c     1000   5107    31    1     7   141    12    51     3    18 
qcqp1000-2nc    1000   5107    68    1    78   119   189   236     2   605 
qcqp1500-1c     1500  10508   122    2     f  1156    46   791     5   143 
qcqp1500-1nc    1500  10508     t  140   338   981   156     i    10     f 
qssp180       261365 139141    15    9     t     t   156   241    10     t 
robot_1600     14399   9601     1    1     8     5     2    10     1   574 
robot_a         1001  52013   688    1     7   121    18    24     3     f 
robot_b         1001  52013   717    9   322   144  1200    25     4     i 
robot_c         1001  52013   683    1     f   147    13    24     3     i 
rocket_12800   51201  38400     6    2     t   581    24    12     2     t 
steering_12800 32000  25601    14    1   678    78    52    36     2     t 
svanberg       50000  50000    31    3     t     f    43    23     5     t 
WM_CFy         8520   9826  1243  1612  2922     f  5526     i    13     t 
===========================================================================
nv/nc: no. of var./cons.; t/m/i: tim/mem/itlim exceeded
$: Higher performance of IPOPT may be achieved by using different
linear algebra routines (both architecture and problem dependent)
===========================================================================