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In fact, the great watershed in optimization isn’t
between linearity and nonlinearity, but convexity and
nonconvexity.

R. Tyrrell Rockafellar (1993)



Why Convexity is Important

• An optimization problem is said to be convex if the set of
feasible solutions is convex (every solution on the line segment
between any two feasible solutions is also feasible) and the
objective function to be minimized is convex.

• It’s easy to show that any local minimum of a convex
optimization problem is also a global minimum.

• Numerical methods for optimization are iterative methods that
under appropriate conditions can be shown to converge to a
locally optimal solution.

• If we have a convex minimization problem and an optimization
algorithm that converges to a locally optimal solution, then we
can be sure that we’ve found a globally optimal solution.



The SDP Problem

max tr (CX)

(P ) A(X) = b

X � 0

where

A(X) =


tr (A1X)

tr (A2X)
...

tr (AmX)

 .



The Dual Problem

min bT y

(D) AT (y)− C = Z

Z � 0

where

AT (y) =
k∑

i=1

yiAi.



Important Assumptions

• All of the matrices in the problem are symmetric matrices with
real entries.

• It is assumed that the constraint matrices Ai are linearly
independent.

• It is assumed that the problem has strictly feasible primal and
dual solutions.

• Under these assumptions, (P) and (D) will have optimal values
which are equal. Most algorithms for SDP provide both primal
and dual optimal solutions.



Comparison with Linear Programming

• The objective function tr (CX) can be written as

tr (CX) =
n∑

i=1

n∑
j=1

CijXij .

Thus the objective is a linear function of the elements of X.

• By the same argument, the constraints tr(AiX) = bi are linear
in the elements of the matrix X.



The Constraint X � 0.

• The only thing nonlinear about our problem is the positive
semidefinite constraint X � 0.

• It turns out that the set of symmetric and positive semidefinite
matrices is a closed convex cone.

• Thus our SDP is a convex optimization problem.



A Hierarchy Of Convex Optimization Problems

LP ⊂ CQP ⊂ SOCP ⊂ SDP ⊂ CP.

Polynomial time interior point methods for LP have been
generalized to solve problems in this hierarchy up to the level of
SDP.

Many other convex optimization problems can be formulated as
structured convex optimization problems that fit into this
classification scheme at some level.

Some nonconvex optimization problems have convex relaxations
that can be fit into this scheme. The relaxations can be used to
compute bounds on the nonconvex optimization problem.



An Example

Consider the minimization problem

min (cT x)2

dT x

Ax ≥ b

x ≥ 0

where we will assume that d ≥ 0.



An Example

First, we use a standard trick to move the nonlinear objective
function into the constraints.

min t
(cT x)2

dT x
≤ t

Ax ≥ b

x ≥ 0

Next, consider the matrix t cTx

cTx dTx





An Example

• This two by two matrix is positive semidefinite iff its principal
minors are nonnegative.

• In this case, we need t ≥ 0, dTx ≥ 0 and t(dTx)− (cTx)2 ≥ 0.

• Since our original objective function is nonnegative, the
constraint t ≥ 0 will cause no problems.

• Since d ≥ 0 and x ≥ 0, dTx ≥ 0.

• Furthermore, the inequality (cT x)2

dT x
≤ t can be rewritten as

t(dTx)− (cTx)2 ≥ 0.

• Thus our matrix is positive semidefinite iff x and t satisfy the
inequality.



An Example

• The constraint Ax ≥ b is equivalent to Ax− b ≥ 0. Since a
diagonal matrix is positive semidefinite iff its diagonal elements
are nonnegative, this is equivalent to the constraint
diag(Ax− b) � 0.

• The constraint x ≥ 0 is equivalent to the constraint
diag(x) � 0.

• All of these constraints can be combined into a single
constraint as

diag(Ax− b) 0 0 0

0 diag(x) 0 0

0 0 t cTx

0 0 cTx dTx

 � 0.



An Example

This constraint can be written as

A0 + x1A1 + . . .+ xnAn + tAn+1 � 0

where

A0 =


diag(−b) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





An Example

For i = 1, 2, . . . n,

Ai =


diag(A(·, i)) 0 0 0

0 diag(ei) 0 0

0 0 0 ci

0 0 ci di


and,

An+1 =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 .



An Example

Our problem can now be written in the standard dual form as

min t

A0 + x1A1 + . . .+ xnAn + tAn+1 = Z

Z � 0.



The Schur Complement Theorem

A symmetric matrix

D =

 A B

BT C


is positive semidefinite (PSD) iff the matrices C and A−BC†BT

are PSD and B(I − CC†) = 0. Here C† is the Moore-Penrose
pseudoinverse of C.

In the special case where C is invertible, D is PSD iff C and
A−BC−1BT are PSD.



The Schur Complement Theorem

Note also that a symmetric permutation of a matrix B = P−1AP is
a similarity transformation, so that B is PSD iff A is PSD. Thus we
can permute the columns and rows of the matrix and retain PSD.
In particular, this means that D is PSD iff

E =

 C BT

B A


is PSD.



Convex Quadratic Constraints

The convex quadratic constraint

(Ax− b)T (Ax− b)− (cTx+ d) ≤ 0

can be written as cTx+ d (Ax− b)T

(Ax− b) I

 � 0

or  I Ax− b
(Ax− b)T cTx+ d

 � 0.



Constraints On Eigenvalues

Recall that if X has eigenvalues λ1, λ2, . . ., λn, then X − tI has
eigenvalues λ1 − t, λ2 − t, . . ., λn − t.

If we want the eigenvalues of A(x) = x1A1 + . . .+ xmAm to be
greater than or equal to t, then we can use the constraint

A(x)− tI � 0

Similarly, if we want the eigenvalues of A(x) to be less than or
equal to t, then we can use the constraint

−(A(x)− tI) � 0.

If we want to minimize the maximum eigenvalue of A(x),

min t

tI −A(x) � 0.



Constraints On Eigenvalues

Consider the problem of maximizing

‖A(x)‖22 = λmax(A(x)TA(x)).

Using the Schur complement theorem and the above eigenvalue
inequalities, this can be written as

min t tI A(x)

A(x)T tI

 � 0



Constraints On Rank

In some cases, we would like to enforce the constraint

X = xxT .

That is, X is required to be a rank one matrix. Unfortunately, this
constraint is nonconvex and cannot be represented in SDP.

However, it is possible to relax the constraint to

X − xxT � 0

or  X x

xT 1

 � 0

or

X � 0



The MAX–CUT Problem

Suppose that we are given a graph with n nodes and edge weights
wi,j . We would like to partition the nodes of the graph into two sets
so that the weight of the edges between the two sets is maximized.

Let xi be +1 if node i is in the first set, and -1 if node i is in the
second set. We can then formulate the MAX–CUT problem as a
±1 quadratic programming problem.

max
∑n

i=1

∑n
j=1

wi,j(1−xixj)
4

xi = ±1 i = 1, 2, . . . , n



The MAX–CUT Problem

We can write the constraints xi = ±1 as

X = xxT

and

Xi,i = 1 i = 1, 2, . . . , n

We can then relax X = xxT to X � 0.



The MAX–CUT Problem

The resulting SDP relaxation of MAX–CUT is

max tr((−W/4)X) + c

(MCR) Xi,i = 1 i = 1, 2, . . . , n

X � 0

where

c =
n∑

i=1

n∑
j=1

wi,j/4



The MAX–CUT Problem

This SDP relaxation of MAX–CUT was introduced by Goemans
and Williamson in 1995. They showed that:

• The optimal value of (MCR) is no more than 1.14 times the
optimal value of the MAX–CUT problem.

• A randomized rounding heuristic can be used to generate a cut
with expected value no less than 0.878 times the value of
(MCR).

• A deterministic derandomized algorithm can be used to
generate a cut with value no less than 0.878 times the value of
(MCR).



Algorithms for SDP

The most commonly used algorithms for SDP are primal-dual
interior point methods. These methods essentially apply Newton’s
method to a slightly perturbed version of the Karush-Kuhn-Tucker
optimality conditions for the primal and dual SDP problems

Unfortunately, the primal-dual interior point method requires the
solution of a dense linear system of m equations in m unknowns.
For problems with tens of thousands of constraints, the storage
required by the method makes the primal-dual method impractical.

There is considerable interest in first order methods that do not
require O(m2) storage. Augmented Lagrangian methods offer some
promise but are not yet as robust as the primal-dual interior point
method.



Software for SDP

A number of software packages for solving SDP problems are
available:

• CSDP. Borchers.

• DSDP. Benson.

• SeDuMi. Sturm.

• SDPA. Fujisawa, Kojima, Nakata, Yamashita.

• SDPSOL. Boyd.

• SDPT3. Todd, Toh, and Tutuncu.

• PENNON. Kocvara.

See http://plato.la.asu.edu/topics/problems/nlores.html for links
to these packages.



Conclusions

• Semidefinite programming is a relatively new area of research,
having been developed within the past 15 years.

• Interest in semidefinite programming has grown out of work
with interior point methods for LP, eigenvalue optimization
problems, and work in control theory.

• At this point, software for solving SDP’s (and related
problems) is readily available. Problems with hundreds or
thousands of constraints can be readily solved, but larger
problems are still difficult.

• Applications of SDP have arisen in many different areas. We
can expect that more applications will appear over the next
few years.


