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In fact, the great watershed in optimization isn’t
between linearity and nonlinearity, but convexity and

nonconvexity.

R. Tyrrell Rockafellar (1993)




Why Convexity is Important

An optimization problem is said to be convex if the set of
feasible solutions is convex (every solution on the line segment
between any two feasible solutions is also feasible) and the

objective function to be minimized is convex.

It’s easy to show that any local minimum of a convex

optimization problem is also a global minimum.

Numerical methods for optimization are iterative methods that
under appropriate conditions can be shown to converge to a

locally optimal solution.

If we have a convex minimization problem and an optimization
algorithm that converges to a locally optimal solution, then we
can be sure that we’ve found a globally optimal solution.




The SDP Problem
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The Dual Problem




Important Assumptions

All of the matrices in the problem are symmetric matrices with

real entries.

It is assumed that the constraint matrices A; are linearly

independent.

It is assumed that the problem has strictly feasible primal and
dual solutions.

Under these assumptions, (P) and (D) will have optimal values
which are equal. Most algorithms for SDP provide both primal
and dual optimal solutions.




Comparison with Linear Programming

e The objective function tr (CX) can be written as

i=1 j=1
Thus the objective is a linear function of the elements of X.

e By the same argument, the constraints tr(A4; X) = b; are linear
in the elements of the matrix X.




The Constraint X > 0.

e The only thing nonlinear about our problem is the positive
semidefinite constraint X > 0.

e It turns out that the set of symmetric and positive semidefinite

matrices is a closed convex cone.

e Thus our SDP is a convex optimization problem.




A Hierarchy Of Convex Optimization Problems

LP CCQP cCc SOCPcCcSDP c CP.

Polynomial time interior point methods for LP have been

generalized to solve problems in this hierarchy up to the level of
SDP.

Many other convex optimization problems can be formulated as
structured convex optimization problems that fit into this

classification scheme at some level.

Some nonconvex optimization problems have convex relaxations
that can be fit into this scheme. The relaxations can be used to

compute bounds on the nonconvex optimization problem.




An Example

Consider the minimization problem

(cTas)2
dT x

Ax b
x > 0

min

where we will assume that d > 0.



An Example

First, we use a standard trick to move the nonlinear objective

function into the constraints.

min t

(c"z)?
dT x

Ax

X

Next, consider the matrix

{ clx

cloe dlx




An Example

This two by two matrix is positive semidefinite iff its principal

minors are nonnegative.

In this case, we need t > 0, d'x > 0 and t(d'z) — (c''z)? > 0.

Since our original objective function is nonnegative, the

constraint ¢ > 0 will cause no problems.

Since d > 0 and . >0, d'x > 0.

T 2
Furthermore, the inequality (Cdex) < t can be rewritten as

t(d'x) — (cf'z)? > 0.

Thus our matrix is positive semidefinite iff x and ¢ satisfy the
inequality.




An Example

e The constraint Az > b is equivalent to Ax — b > 0. Since a
diagonal matrix is positive semidefinite iff its diagonal elements

are nonnegative, this is equivalent to the constraint

diag(Ax — b) = 0.

e The constraint x > 0 is equivalent to the constraint
diag(x) = 0.

e All of these constraints can be combined into a single

constraint as

i diag(Ax — b) 0 0
0 diag(z) 0
0 0 t
0 0 cl'x




An Example
This constraint can be written as
Ao+ 1A+ ...+, A, +tA,11 =0

where

- diag(—b)




An Example




An Example

Our problem can now be written in the standard dual form as

min t
AO -+ xlAl + ...+ QJnAn + tAn_|_1
A




The Schur Complement Theorem

A symmetric matrix

A B
BT C

D =

is positive semidefinite (PSD) iff the matrices C and A — BCTBT
are PSD and B(I — CCT) = 0. Here C7 is the Moore-Penrose

pseudoinverse of C.

In the special case where (' is invertible, D is PSD iff C' and
A — BC BT are PSD.




The Schur Complement Theorem

Note also that a symmetric permutation of a matrix B = P71 AP is
a similarity transformation, so that B is PSD iff A is PSD. Thus we
can permute the columns and rows of the matrix and retain PSD.
In particular, this means that D is PSD iff

C BT
B A




Convex Quadratic Constraints

The convex quadratic constraint

(Az —b) ' (Az —b) — (cPz +d) <0

can be written as

cl'e+d (Ax —b)t
(Az — b) I

I Az —b
(Az — )T o +d




Constraints On Eigenvalues

Recall that if X has eigenvalues A1, Ao, ..., \,, then X — ¢t] has
eigenvalues A\ —t, Ao — ¢, ..., A\, — L.

If we want the eigenvalues of A(x) = x1A41 + ...+ xm A to be

greater than or equal to ¢, then we can use the constraint
A(x) —tlI = 0

Similarly, if we want the eigenvalues of A(x) to be less than or

equal to t, then we can use the constraint
—(A(z) —tI) = 0.
If we want to minimize the maximum eigenvalue of A(x),

min t

tI — A(x) >= 0.




Constraints On Eigenvalues

Consider the problem of maximizing

|A@)[3 = Amax (A(z) " A(2)).

Using the Schur complement theorem and the above eigenvalue

inequalities, this can be written as

min t




Constraints On Rank
In some cases, we would like to enforce the constraint
X =gzt

That is, X is required to be a rank one matrix. Unfortunately, this

constraint is nonconvex and cannot be represented in SDP.

However, it is possible to relax the constraint to

X—asztO




The MAX—-CUT Problem

Suppose that we are given a graph with n nodes and edge weights

w; ;. We would like to partition the nodes of the graph into two sets

so that the weight of the edges between the two sets is maximized.

Let x; be +1 if node ¢ is in the first set, and -1 if node 7 is in the
second set. We can then formulate the MAX—-CUT problem as a

+1 quadratic programming problem.

n n w; j(1—x;x;)
max ) 23:1 4

v, = +1i=1,2,....n




The MAX—-CUT Problem

We can write the constraints x; = £1 as

X =gzt

Xi,izl ’1:21,2,...,71

We can then relax X = zz! to X = 0.




The MAX-CUT Problem
The resulting SDP relaxation of MAX-CUT is

max tr((—=W/4)X) +c
(MCR) Xz',i 1 i:1,2,...,n

X 0

where

C — ZZ’UJ%]/ZL

i=1 j=1




The MAX—-CUT Problem

This SDP relaxation of MAX—-CUT was introduced by Goemans
and Williamson in 1995. They showed that:

e The optimal value of (MCR) is no more than 1.14 times the
optimal value of the MAX—-CUT problem.

e A randomized rounding heuristic can be used to generate a cut

with expected value no less than 0.878 times the value of
(MCR).

e A deterministic derandomized algorithm can be used to

generate a cut with value no less than 0.878 times the value of
(MCR).




Algorithms for SDP

The most commonly used algorithms for SDP are primal-dual
interior point methods. These methods essentially apply Newton’s
method to a slightly perturbed version of the Karush-Kuhn-Tucker
optimality conditions for the primal and dual SDP problems

Unfortunately, the primal-dual interior point method requires the
solution of a dense linear system of m equations in m unknowns.
For problems with tens of thousands of constraints, the storage
required by the method makes the primal-dual method impractical.

There is considerable interest in first order methods that do not

require O(m?) storage. Augmented Lagrangian methods offer some

promise but are not yet as robust as the primal-dual interior point
method.




Software for SDP

A number of software packages for solving SDP problems are

available:

e CSDP. Borchers.
DSDP. Benson.
SeDuMi. Sturm.
SDPA. Fujisawa, Kojima, Nakata, Yamashita.
SDPSOL. Boyd.
SDPT3. Todd, Toh, and Tutuncu.

e PENNON. Kocvara.

See http://plato.la.asu.edu/topics/problems/nlores.html for links

to these packages.




Conclusions

Semidefinite programming is a relatively new area of research,

having been developed within the past 15 years.

Interest in semidefinite programming has grown out of work
with interior point methods for LP, eigenvalue optimization
problems, and work in control theory.

At this point, software for solving SDP’s (and related

problems) is readily available. Problems with hundreds or

thousands of constraints can be readily solved, but larger
problems are still difficult.

Applications of SDP have arisen in many different areas. We
can expect that more applications will appear over the next
few years.




