Optimization-based design of multisine signals for “plant-friendly” identification of highly interactive systems

Hans D. Mittelmann*, Gautam Pendse
Department of Mathematics and Statistics
College of Liberal Arts and Sciences
Arizona State University, Tempe, AZ 85287

Hyunjin Lee, Daniel E. Rivera
Control Systems Engineering Laboratory
Department of Chemical and Materials Engineering
Ira A. Fulton School of Engineering

mittelmann@asu.edu (480)-965-6595
Presentation Outline

- **Multivariable System Identification using Multisine Signals**
 - Extension to highly interactive systems using modified “zippered” spectra
 - Optimization-based formulations for minimum crest factor signals, conducive to “plant-friendliness”

- **Case Study: High-Purity Distillation Column (Weischedel-McAvoy)**
 - Optimization-based design using an *a priori* ARX model
 - Closed-loop evaluation of data effectiveness with MPC
 - Extension to input signal design for nonlinear identification using NARX models

- **Latest Efforts**
 - Input signal design for data-centric estimation (such as MoD)
System Identification Challenges Associated with Highly Interactive Processes:

- Need to capture both low and high gain directions under noisy conditions
- Plant-friendliness must be achieved during identification testing
Plant-Friendly Identification Testing

• A plant-friendly input signal should:
 ▶ be as short as possible

 ▶ not take actuators to limits, or exceed move size restrictions

 ▶ cause minimum disruption to the controlled variables (i.e., low variance, small deviations from setpoints)
The Crest Factor (CF) is defined as the ratio of ℓ_∞ (or Chebyshev) norm and ℓ_2 norm

$$CF(x) = \frac{\ell_\infty(x)}{\ell_2(x)}$$

A low crest factor indicates that most elements in the input sequence are located near the min. and max. values of the sequence.

All $\phi_i = 0$, cf = 4.4721

ϕ_i selected by Schroeder phase eqn., cf = 1.8767
Multisine Input Signals

A multisine input is a deterministic, periodic signal composed of a harmonically related sum of sinusoids.

\[
u_j(k) = \sum_{i=1}^{m\delta} \hat{\delta}_{ji} \cos(\omega_i kT + \phi_{ji}^\delta) + \sum_{i=m\delta+1}^{m(\delta+n_s)} \alpha_{ji} \cos(\omega_i kT + \phi_{ji}) + \sum_{i=m(\delta+n_s)+1}^{m(\delta+n_s+n_a)} \hat{\alpha}_{ji} \cos(\omega_i kT + \phi_{ji}^a), \quad j = 1, \ldots, m
\]

where \(T \) is sampling time, \(N_s \) is the sequence length, \(m \) is the number of channels, \(\delta, n_s, n_a \) are the numbers of sinusoids per channel \((m(\delta+n_s+n_a) = N_s/2), \phi_{ji}^\delta, \phi_{ji}, \phi_{ji}^a \) are the phase angles, \(\alpha_{ji} \) represents the Fourier coefficients defined by the user, \(\hat{\delta}_{ji}, \hat{\alpha}_{ji} \) are the “snow effect” Fourier coefficients.
Standard Zippered Spectrum

Primary frequency band
(phases selected by optimizer)

Coefficients & phases selected by optimizer

Channel 1
Channel 2
Channel 3

Coefficients & phases selected by optimizer

$\frac{2\pi m (1 + \delta)}{N_s T}$
ω^*
Frequency
ω^*

$\frac{2\pi mn_s}{N_s T}$
$\frac{\pi}{T}$
Modified Zippered Spectrum

Primary excitation frequency band

\[\hat{a}_m \]

Coefficients selected by optimizer

\[\frac{2\pi m(1 + \delta)}{N_s T} \]

\[\omega_\ast \]

\[\frac{2\pi m n_s}{N_s T} \]

\[\frac{\pi}{T} \]
Problem Statement #1

\[
\begin{align*}
\min & \quad \{ \phi_{ji}^a \}, \{ \phi_{ji}^s \}, \{ \phi_{ji} \}, \{ \hat{a}_{ji} \}, \{ \hat{\delta}_{ji} \} \\
\max & \quad \sum_j \text{CF}(u_j) \quad j = 1, \ldots, m \\
\text{subject to maximum move size constraints on} & \quad \{ u_j(k) \} \\
|\Delta u_j(k)| & \leq \Delta u_j^{max} \quad \forall \ k, j \\
\text{and high/low limits on} & \quad \{ u_j(k) \} \\
 u_j^{min} & \leq u_j(k) \leq u_j^{max} \quad \forall \ k, j
\end{align*}
\]
Problem Statement #2

\[
\begin{align*}
\min_{\phi^a_{ji}, \phi^b_{ji}, \phi_{ji}, \hat{a}_{ji}, \hat{b}_{ji}} \quad & \max_z \text{CF}(y_z) \\
\quad & j = 1, \ldots, m \quad z = 1, \ldots, N_{outs}
\end{align*}
\]

subject to constraints in input

\[
|\Delta u_j(k)| \leq \Delta u_{j}^{\max} \quad \forall k, j
\]

\[
u_{j}^{\min} \leq u_j(k) \leq u_{j}^{\max} \quad \forall k, j
\]

and output

\[
|\Delta y_z(k)| \leq \Delta y_{z}^{\max} \quad \forall k, z
\]

\[
y_{z}^{\min} \leq y_z(k) \leq y_{z}^{\max} \quad \forall k, z
\]

This problem statement requires an \textit{a priori} model to generate output predictions.
Constrained Solution Approach

Some aspects of our numerical solution approach:

✓ The problem is formulated in the modeling language AMPL, which provides exact, automatic differentiation up to second derivatives.

✓ A direct min-max solution is used where the nonsmoothness in the problem is transferred to the constraints.

Case Study: High-Purity Distillation

High-Purity Distillation Column per Weischedel and McAvo (1980): a classical example of a highly interactive process system, and a challenging problem for control system design.

Fig. 2. Two-product distillation column.
For $\tau_{dom}^L = 5, \tau_{dom}^H = 20$ min, $\delta = 0$, $\alpha_s = 2$, and $\beta_s = 3$, feasible design choices are $T = 2$ min, $n_s = 25$, $N_s = 378$, and $\gamma = 15$.
State-space Analysis

Input State-Space

Output State-Space

+(blue): min CF(y) signal with a modified zippered spectrum and a priori ARX model

*(red): min CF(u) signal with a standard zippered spectrum
min CF signal design: time-domain

- min CF(u) signal with Standard Zippered Spectrum
- min CF(y) signal with ARX model and Modified Zippered Spectrum

Noise SNR [-0.04, -1.12] dB
Noise SNR [-5.0, -5.0] dB
Closed-loop Performance Comparison using MPC
Setpoint Tracking: models obtained from noise-free data

MPC Tuning Parameters:
Prediction Horizon PHOR : 100
Move Horizon : 25
Output Weighting: [1 1]
Input Weighting : [0.2 0.2]
Closed-loop Performance Comparison using MPC
Setpoint Tracking: models obtained from noisy data conditions

MPC Tuning Parameters:
Prediction Horizon PHOR : 100
Move Horizon : 25
Output Weighting: [1 1]
Input Weighting : [0.2 0.2]
ARX Model Prediction vs. Plant Data

+ (blue) : Model Prediction

* (red) : Weischedel-McAvoy Distillation Simulation
NARX Model Estimation

Rely on a NARX model equation to predict the system outputs during optimization:

\[
y(k) = \theta^{(0)} + \sum_{i=1}^{n_y} \theta^{(1)}_i y(k - i) + \sum_{i=\rho}^{n_u} \theta^{(2)}_i u(k - i) + \sum_{i=1}^{n_y} \sum_{j=1}^{i} \theta^{(3)}_{i,j} y(k - i)y(k - j) \\
+ \sum_{i=\rho}^{n_u} \sum_{j=\rho}^{i} \theta^{(4)}_{i,j} u(k - i)u(k - j) + \sum_{i=1}^{n_y} \sum_{j=\rho}^{n_u} \theta^{(5)}_{i,j} y(k - i)u(k - j) + ...
\]

Evaluation criterion (Sriniwas et al., 1995):

\[
I = \frac{\sum_{k=1}^{N}[y(k) - \hat{y}(k)]^2}{\sum_{k=1}^{N}[y(k) - \bar{y}(k)]^2} \times 100\%
\]
ARX vs. NARX Model Predictions

ARX Model

NARX Model

+ (blue) : Model Prediction

* (red) : Weischedel-McAvoy Distillation Simulation
Model-on-Demand Estimation
(Stenman, 1999)

• A modern data-centric approach developed at Linkoping University

• Identification signals geared for MoD estimation should consider the geometrical distribution of data over the state-space.
Weyl Criterion

Theorem (H. Weyl, 1916) A sequence \(\{y_n^1, y_n^2\} \) is equidistributed in \([0, 1)^2\) if and only if

\[
\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i (l_1 y_n^1 + l_2 y_n^2)} = 0
\]

for all sets of integers \(l_1, l_2 \) not both zero.

\[
\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \cos[2\pi (l_1 y_n^1 + l_2 y_n^2)] = 0
\]

\[
\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \sin[2\pi (l_1 y_n^1 + l_2 y_n^2)] = 0
\]
min Crest Factor vs Weyl-based Signals: Output State-Space

Modified Zippered, min CF (y) Signal

Modified Zippered, Weyl-based signal
min Crest Factor vs Weyl-based Signals - PSD

Modified Zippered, min CF (w) Signal

Modified Zippered, Weyl-based

All harmonic coefficients are selected by the optimizer in the Weyl-based problem formulation
More Information on Publications

• Publication webpages:
 – H. Mittelmann:
 http://plato.asu.edu/papers.html
 – D. Rivera:
 http://www.fulton.asu.edu/~csel/Publications-Co
Acknowledgements

This research has been supported by the American Chemical Society
– Petroleum Research Fund,
Grant No. ACS PRF#37610-AC9.