1. The file format

Each file consists of a specification part and of a data part. The specification part
contains information on the file format and on its contents. The data part contains explicit
data.

1.1 The specification part

All entries in this section are of the form <keyword> : <wvalue>, where <keyword> de-
notes an alphanumerical keyword and <wvalue> denotes alphanumerical or numerical data.
The terms <string>, <integer> and <real> denote character string, integer or real data,
respectively. The order of specification of the keywords in the data file is arbitrary (in
principle), but must be consistent, i.e., whenever a keyword is specified, all necessary in-
formation for the correct interpretation of the keyword has to be known. Below we give a
list of all available keywords.

1.1.1 NAME : <string>
Identifies the data file.
1.1.2 TYPE : <string>

Specifies the type of the data. Possible types are

TSP Data for a symmetric traveling salesman problem
ATSP Data for an asymmetric traveling salesman problem
SOP Data for a sequential ordering problem

HCP Hamiltonian cycle problem data
CVRP Capacitated vehicle routing problem data
TOUR A collection of tours

1.1.3 COMMENT : <string>

Additional comments (usually the name of the contributor or creator of the problem in-
stance is given here).

1.1.4 DIMENSION : <integer>

For a TSP or ATSP, the dimension is the number of its nodes. For a CVRP, it is the total
number of nodes and depots. For a TOUR file it is the dimension of the corresponding
problem.

1.1.5 CAPACITY : <integer>
Specifies the truck capacity in a CVRP.
1.1.6 EDGE_WEIGHT_TYPE : <string>

Specifies how the edge weights (or distances) are given. The values are
EXPLICIT Weights are listed explicitly in the corresponding section
EUC_2D Weights are Euclidean distances in 2-D
EUC 3D Weights are Euclidean distances in 3-D

2

MAX_2D Weights are maximum distances in 2-D

MAX 3D Weights are maximum distances in 3-D

MAN_2D Weights are Manhattan distances in 2-D

MAN_3D Weights are Manhattan distances in 3-D

CEIL_2D Weights are Euclidean distances in 2-D rounded up

GEQ Weights are geographical distances

ATT Special distance function for problems att48 and att532

XRAY1 Special distance function for crystallography problems (Version 1)
XRAY2 Special distance function for crystallography problems (Version 2)
SPECIAL There is a special distance function documented elsewhere

1.1.7 EDGE WEIGHT FORMAT : <string>

Describes the format of the edge weights if they are given explicitly. The values are

FUNCTION Weights are given by a function (see above)

FULL_MATRIX Weights are given by a full matrix

UPPER_ROW Upper triangular matrix (row-wise without diagonal entries)
LOWER_ROW Lower triangular matrix (row-wise without diagonal entries)

UPPER DIAG ROW Upper triangular matrix (row-wise including diagonal entries)
LOWER_DIAG_ROW Lower triangular matrix (row-wise including diagonal entries)
UPPER COL Upper triangular matrix (column-wise without diagonal entries)
LOWER_COL Lower triangular matrix (column-wise without diagonal entries)
UPPER_DIAG_COL Upper triangular matrix (column-wise including diagonal entries)
LOWER_DIAG_COL Lower triangular matrix (column-wise including diagonal entries)

1.1.7 EDGE_DATA _FORMAT : <string>

Describes the format in which the edges of a graph are given, if the graph is not complete.
The values are

EDGE LIST The graph is given by an edge list

ADJ LIST The graph is given as an adjacency list

1.1.9 NODE_COORD_TYPE : <string>

Specifies whether coordinates are associated with each node (which, for example may be
used for either graphical display or distance computations). The values are

TWOD _COORDS Nodes are specified by coordinates in 2-D
THREED COORDS Nodes are specified by coordinates in 3-D
NO_COORDS The nodes do not have associated coordinates

The default value is NO_COORDS.
1.1.10 DISPLAY DATA TYPE : <string>

Specifies how a graphical display of the nodes can be obtained. The values are
COORD_DISPLAY Display is generated from the node coordinates
TWOD_DISPLAY Explicit coordinates in 2-D are given
NO_DISPLAY No graphical display is possible
The default value is COORD_DISPLAY if node coordinates are specified and NO_DISPLAY
otherwise.

1.1.11 EOF :

Terminates the input data. This entry is optional.

1.2 The data part

Depending on the choice of specifications some additional data may be required. These
data are given in corresponding data sections following the specification part. Each data
section begins with the corresponding keyword. The length of the section is either implicitly
known from the format specification, or the section is terminated by an appropriate end-
of-section identifier.

1.2.1 NODE COORD_SECTION :

Node coordinates are given in this section. Each line is of the form
<integer> <real> <real>
if NODE_COORD_TYPE is TWOD_COORDS, or
<integer> <real> <real> <real>
if NODE_COORD_TYPE is THREED COORDS. The integers give the number of the respective
nodes. The real numbers give the associated coordinates.
1.2.2 DEPOT SECTION :
Contains a list of possible alternate depot nodes. This list is terminated by a —1.

1.2.3 DEMAND_SECTION :

The demands of all nodes of a CVRP are given in the form (per line)
<integer> <integer>
The first integer specifies a node number, the second its demand. The depot nodes must
also occur in this section. Their demands are 0.
1.2.4 EDGE_DATA_SECTION :
Edges of a graph are specified in either of the two formats allowed in the EDGE_DATA_FORMAT
entry. If the type is EDGE_LIST, then the edges are given as a sequence of lines of the form
<integer> <integer>

each entry giving the terminal nodes of some edge. The list is terminated by a —1.
If the type is ADJ_LIST, the section consists of a list of adjacency lists for nodes. The
adjacency list of a node z is specified as

<integer> <integer> ... <integer> —1

where the first integer gives the number of node x and the following integers (terminated
by —1) the numbers of nodes adjacent to z. The list of adjacency lists is terminated by
an additional —1.

1.2.5 FIXED_EDGES_SECTION :
In this section, edges are listed that are required to appear in each solution to the problem.
The edges to be fixed are given in the form (per line)

<integer> <integer>
meaning that the edge (arc) from the first node to the second node has to be contained in
a solution. This section is terminated by a —1.
1.2.6 DISPLAY DATA SECTION :
If DISPLAY_DATA_TYPE is TWOD_DISPLAY, the 2-dimensional coordinates from which a display
can be generated are given in the form (per line)

<integer> <real> <real>
The integers specify the respective nodes and the real numbers give the associated coordi-
nates.

1.2.7 TOUR_SECTION :

A collection of tours is specified in this section. Each tour is given by a list of integers giving
the sequence in which the nodes are visited in this tour. Every such tour is terminated by
a —1. An additional —1 terminates this section.

1.2.8 EDGE WEIGHT SECTION :

The edge weights are given in the format specified by the EDGE WEIGHT FORMAT entry. At
present, all explicit data is integral and is given in one of the (self-explanatory) matrix
formats. with implicitly known lengths.

2. The distance functions

For the various choices of EGDE_WEIGHT_TYPE, we now describe the computations of the
repsective distances. In each case we give a (simplified) C-implementation for comput-
ing the distances from the input coordinates. All computations involving floating-point
numbers are carried out in double precision arithmetic. The integers are assumed to be
represented in 32-bit words. Since distances are required to be integral, we round to the
nearest integer (in most cases). Below we have used the rounding function “nint”.

2.1 Euclidean distance (L,-metric)

For edge weight type EUC_2D and EUC_3D, floating point coordinates must be specified for
each node. Let x[i], y[i], and z[i] be the coordinates of node %.
In the 2-dimensional case the distance between two points 72 and j is computed as follows:
xd = x[i]l - x[j];
yd = y[i]l - y[jI;
dij = nint(sqrt(xd*xd + yd*yd));

In the 3-dimensional case we have:

xd = x[i] - x[j];
yd = y[i]l - y[jl;
zd = z[i] - z[j];

dij = nint(sqrt(xd*xd + yd*yd + zdxzd));
where sqrt is the C square root function.

2.2 Manhattan distance (L;-metric)

Distances are given as Manhattan distances if the edge weight type is MAN_2D or MAN_3D.
They are computed as follows.
2-dimensional case:

xd = abs(x[i] - x[j]1);

yd = abs(y[i]l - y[j]);

dij = nint(xd + yd);

3-dimensional case:

xd = abs(x[i] - x[j]);
yd = abs(y[i]l - y[j]);
zd = abs(z[i] - z[j]);

dij = nint(xd + yd + zd);

2.3 Maximum distance (7..-metric)

Maximum distances are computed if the edge weight type is MAX_2D or MAX_3D.
2-dimensional case:

xd = abs(x[i] - x[j]);

yd = abs(y[i] - y[j]);

dij = max(nint(xd), nint(yd)));

3-dimensional case:

xd = abs(x[i] - x[j]);
yd = abs(y[i]l - y[j]);
zd = abs(z[i]l - z[j]);

dij = max(nint(xd), nint(yd), nint(zd));

2.4 Geographical distance

If the traveling salesman problem is a geographical problem, then the nodes correspond to
points on the earth and the distance between two points is their distance on the idealized
sphere with radius 6378.388 kilometers. The node coordinates give the geographical lat-
itude and longitude of the corresponding point on the earth. Latitude and longitude are
given in the form DDD.MM where DDD are the degrees and MM the minutes. A positive lati-
tude is assumed to be “North”, negative latitude means “South”. Positive longitude means
“Kast”, negative latitude is assumed to be “West”. For example, the input coordinates for
Augsburg are 48.23 and 10.53, meaning 48°23° North and 10°53 " East.

Let x[i] and y [i] be coordinates for city ¢ in the above format. First the input is converted
to geographical latitude and longitude given in radians.

PI = 3.141592;

deg = nint(x[i]);

min = x[i] - deg;

latitude[i] = PI * (deg + 5.0 * min / 3.0) / 180.0;
deg = nint(y[i]);

min = y[i] - deg;

longitude[i] = PI * (deg + 5.0 * min / 3.0) / 180.0;

The distance between two different nodes ¢ and 7 in kilometers is then computed as follows:

RRR = 6378.388;

ql = cos(longitude[i]l - longitudeljl);
g2 = cos(latitude[i] - latitudel[j]);
g3 = cos(latitude[i] + latitudelj]);

dij = (int) (RRR * acos(0.5%((1.0+ql)*q2 - (1.0-q1)*qg3)) + 1.0);

The function “acos” is the inverse of the cosine function.

2.5 Pseudo-Euclidean distance

The edge weight type ATT corresponds to a special “pseudo-Euclidean” distance function.
Let x[i] and y[i] be the coordinates of node i. The distance between two points ¢ and j
is computed as follows:

xd = x[i] - x[j];

yd = y[i] - y[jl;

rij = sqrt((xd*xd + yd*yd) / 10.0);
tij = nint(rij);

if (tij<rij) dij = tij + 1;

else dij = tij;

2.6 Ceiling of the Euclidean distance

The edge weight type CEIL_2D requires that the 2-dimensional Euclidean distances is
rounded up to the next integer.

2.7 Distance for crystallography problems

We have included into TSPLIB the crystallography problems as described in [1]. These
problems are not explicitly given but subroutines are provided to generate the 12 problems
mentioned in this reference and subproblems thereof (see section 3.2).

To compute distances for these problems the movement of three motors has to be taken into
consideration. There are two types of distance functions: one that assumes equal speed
of the motors (XRAY1) and one that uses different speeds (XRAY2). The corresponding
distance functions are given as FORTRAN implementations (files deq.f, resp. duneq.f) in
the distribution file.

For obtaining integer distances, we propose to multiply the distances computed by the
original subroutines by 100.0 and round to the nearest integer.

We list our modified distance function for the case of equal motor speeds in the FORTRAN
version below.

INTEGER FUNCTION ICOST(V,W)

INTEGER V,W

DOUBLE PRECISION DMIN1,DMAX1,DABS

DOUBLE PRECISION DISTP,DISTC,DISTT,COST

DISTP=DMIN1(DABS (PHI (V) -PHI(W)) ,DABS (DABS (PHI (V)-PHI(W))-360.0E+0))

DISTC=DABS (CHI(V)-CHI(W))

DISTT=DABS (TWOTH(V)-TWOTH(W))

COST=DMAX1(DISTP/1.00E+0,DISTC/1.0E+0,DISTT/1.00E+0)
C *** Make integral distances ***

ICOST=AINT (100.0E+0*COST+0.5E+0)

RETURN

END

The numbers PHI(), CHI(), and TWOTH() are the respective z-, y-, and z-coordinates of
the points in the generated traveling salesman problems. Note, that TSPLIB95 contains
only the original distance computation without the above modification.

2.7 Verification

To verify correctness of the distance function implementations we give the length of some
“canonical” tours 1,2,3,...,n.

The canonical tours for pcb442, gré66, and att532 have lengths 221440, 423 710, and
309636, respectively.

The canonical tour for the problem xray14012 (the 8th problem considered in [21]) with
distance XRAY1 has length 15429 219. With distance XRAY2 it has the length 12 943 294.

