
Maximizing
Information Gain in

Directional Sensor Problems

Hans D. Mittelmann
Arizona State University

Domenico Salvagnin*
DEI, University of Padova

1. Problem

N targets on a 2D plane (with uncertain location)

M directional sensors on a 2D plane (with known location)

‣ K discrete values for sensor

directions

‣ control vector u associates to

each sensor a variable ui encoding

the sensor direction

direction

field of view

‣ target j with location

‣ a priori distribution of target

location is Gaussian

�j

N (aj , Aj)

‣ If target j is within the field of view of sensor i, we get the

noisy measurement zij (nothing otherwise):

zij = H�j + ⌘ij

observation model target location ⌘ij ⇠ N (0, R(si, ui,�j))

measurement
covariance matrix R

‣ All observations are fused together and approximated as an

a posteriori Gaussian distribution N (yj , Pj)

Pj =

A�1

j +
X

i:visible

HT (R(si, ui, aj))
�1H

!�1

yj = Pj

Ajaj +

X

i:visible

HT (R(si, ui, aj))
�1zij

!

‣ previous approaches dealt with very combinatorial objective

functions

‣ maximize coverage

‣ minimize number of sensors needed

‣ etc...

‣ Here we maximize the total information gain

‣ Note that some combinatorial objectives can be seen as

proxies to our objective.

Which objective function?

maxE

2

4
NX

j=1

Ij(u)

3

5

‣ The overall objective is thus:

(can be approximated with a Monte Carlo approach)

‣ Given a control vector u, for a given target j the information

gain reads:

Ij(u) = � log

✓
det(Pj)

det(Aj)

◆

Related Work
‣ In [1] the information gain objective was introduced

‣ A few simple ad-hoc heuristics are proposed and a nonlinear

programming problem is solved to provide upper bounds

‣ Heuristics provide reasonably good solutions in polynomial

time

‣ MATLAB code, hard to judge performance

[1] S. Ravi, E. Chong and H. D. Mittelmann, Cooperative Control of Directional Sensors to Maximize
Information Gain, Proceedings of SPIE conference "Signal and Data Processing of Small Targets
2013", San Diego, CA

2. Heuristic Methods

Local Search

u0

u1 u2
u3

u4

initial control vector local optimum

Neighborhood defined as the control vectors that can be obtained by changing
a single sensor at the time

Meta Heuristics

‣ Meta-heuristics built on top of local search:

‣ Tabu Search

‣ Randomized Local Search

‣ Both are started from a random control vector

‣ Both are stopped if no improvement for a given number of

iterations

3. Exact Methods

Properties
‣ By algebraic manipulation, it is possible to get rid of inversion

of matrices of variables.

‣ It is possible to compute off-line if a given target j in sample s

is visible from sensor i pointing in direction k.

‣ Most nonlinear expressions can be computed off-line as well.

‣ log(det(X)) is a concave function in the semidefinite cone.

problem can be formulated as a mixed-integer convex program!

X

k

uik = 1 8i

definition of inverse of a
posteriori covariance matrix

(for each target in each
sample)

inverse of
measurement

covariance matrix
(or null matrix if

not visible)

inverse of a
posteriori

covariance matrix

each sensor must point in
one direction

maximize average information
gain over all samples

max

X

s

X

j

⇥
log(det(P js)) + log(det(Aj))

⇤
/|S|

P js = A�1
j +

X

i

X

k

Rijksuik 8j8s

How to solve it?

Can be modeled easily with an algebraic modeling language such

as AMPL and fed directly to a Mixed-Integer Convex

Programming solver, such as SCIP or KNITRO

‣ easy to implement

‣ MICP solvers are not however as stable as MIP solvers...

‣ finding the right solver/parameter tuning can be tricky

Benders!
Devise a generalized Benders decomposition approach and use

a Mixed-Integer Programming solver, such as CPLEX

‣ MIP solvers are a mature and stable technology

‣ Master problem has only variables uik, while we have a slave

for each target j and each sample s

‣ Slaves can be solved analytically in our case

‣ Benders cuts (in this case, outer approximation cuts) can

be numerically unstable...

Master

8
>>>>>><

>>>>>>:

max

hP
s,j ✓sj

i
/|S|

P
k uik = 1

hBenders cutsi
uik 2 {0, 1}
✓sj free

Slaves

(
f(P js) = log(det(P js)) + log(det(Aj)) � ✓⇤sj
P js = A�1

j +

P
i

P
k Rijksu⇤

ik

✓sj  f(P
⇤
js) +rf(P

⇤
js)(P js � P

⇤
js)Benders Cut

How to implement Benders?

Old Style
Benders

- solve MIP at each
iteration
- builtin restarts
- MIP as black box

Modern
Benders

- single tree B&C
- dual reductions off
- intrusive callbacks
- bad branching at the
very beginning

Hybrid
Benders

- best of both worlds
- can do even better
when combined with
RLS

4. Preliminary Computations

M TS RLS KNITRO Benders HBender

4 *0.22 0.79 139.32 22.85 6.12

5 0.38 1.64 409.96 110.20 9.78

6 0.53 2.39 1637.55 398.66 26.03

7 0.68 3.64 9188.71 3660.68 144.38

8 *0.98 4.77 31619.70 20937.65 1757.69

Running times in seconds*optimum missed

N = 9 S = 150K = 10

Conclusions

‣ RLS is slightly more expensive than TS, but always finds the

optimal solution (while TS only 3/5).

‣ KNITRO and a simple Benders implementation do not seem

to scale well as the number of sensors increases.

‣ A more sophisticated Benders implementation performs

much better.

Questions?

