Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

Yin Zhang

Department of Computational and Applied Mathematics
Rice University, Houston, Texas, U.S.A.

Arizona State University

March 5th, 2008
Outline:

- CS: Application and Theory
- Computational Challenges and Existing Algorithms
- Fixed-Point Continuation: theory to algorithm
- Exploit Structures in TV-Regularization

Acknowledgments: (NSF DMS-0442065)

- Collaborators: Elaine Hale, Wotao Yin
- Students: Yilun Wang, Junfeng Yang
Compressive Sensing Fundamental

Recover sparse signal from incomplete data

- Unknown signal $x^* \in \mathbb{R}^n$
- Measurements: $Ax^* \in \mathbb{R}^m$, $m < n$
- x^* is sparse ($\#\text{nonzeros} \|x^*\|_0 < m$)

Unique $x^* = \arg\min\{\|x\|_1 : Ax = Ax^*\} \Rightarrow x^*$ is recoverable

- $Ax = Ax^*$ under-determined, $\min\|x\|_1$ favors sparse x
- Theory: $\|x^*\|_0 < O(m/ \log(n/m)) \Rightarrow$ recovery for random A (Donoho et al, Candes-Tao et al ..., 2005)
The signal was synthesized by a few Fourier components.
Application: Missing Data Recovery II

75% of pixels were blacked out (becoming unknown).
85% of pixels were blacked out (becoming unknown).
How are missing data recovered?

Data vector f has a missing part u:

$$f := \begin{bmatrix} b \\ u \end{bmatrix}, \quad b \in \mathbb{R}^m, \ u \in \mathbb{R}^{n-m}. $$

Under a basis Φ, f has a representation x^*, $f = \Phi x^*$, or

$$\begin{bmatrix} A \\ B \end{bmatrix} x^* = \begin{bmatrix} b \\ u \end{bmatrix}. $$

Under favorable conditions (x^* is sparse and A is “good”),

$$x^* = \arg \min \{ \| x \|_1 : Ax = b \}, $$

then we recover missing data $u = B x^*$.
Sufficient Condition for Recovery

Feasibility: \(\mathcal{F} = \{ x : Ax = Ax^* \} \equiv \{ x^* + v : v \in \text{Null}(A) \} \)

Define: \(S^* = \{ i : x_i^* \neq 0 \}, \quad Z^* = \{ 1, \cdots, n \} \setminus S^* \)

\[
\| x \|_1 = \| x^* \|_1 + (\| v_{Z^*} \|_1 - \| v_{S^*} \|_1) + (\| x_{S^*}^* + v_{S^*} \|_1 - \| x_{S^*}^* \|_1 + \| v_{S^*} \|_1) \\
> \| x^* \|_1, \quad \text{if} \quad \| v_{Z^*} \|_1 > \| v_{S^*} \|_1
\]

\(x^* \) is the unique min. if \(\| v \|_1 > 2 \| v_{S^*} \|_1, \forall v \in \text{Null}(A) \setminus \{ 0 \} \).

Since \(\| x^* \|_0^{1/2} \| v \|_2 \geq \| v_{S^*} \|_1 \), it suffices that

\[
\| v \|_1 > 2 \| x^* \|_0^{1/2} \| v \|_2, \quad \forall v \in \text{Null}(A) \setminus \{ 0 \}
\]
\textbf{\(\ell_1\)-norm vs. Sparsity}

Sufficient Sparsity for Unique Recovery:

\[
\sqrt{\|x^*\|_0} < \frac{1}{2} \frac{\|v\|_1}{\|v\|_2}, \quad \forall v \in \text{Null}(A) \setminus \{0\}
\]

By uniqueness,

\[x \neq x^*, \ Ax = Ax^* \Rightarrow \|x\|_0 > \|x^*\|_0.\]

Hence,

\[
x^* = \arg \min \{ \|x\|_1 : Ax = Ax^* \}
= \arg \min \{ \|x\|_0 : Ax = Ax^* \}
\]

i.e., minimum \(\ell_1\)-norm implies maximum sparsity.
In most subspaces, $\|v\|_1 \gg \|v\|_2$

In \mathbb{R}^n, $1 \leq \frac{\|v\|_1}{\|v\|_2} \leq \sqrt{n}$. However, $\|v\|_1 \gg \|v\|_2$ in most subspaces (due to concentration of measure).

Theorem: (Kashin 77, Garnaev-Gluskin 84)

Let $A \in \mathbb{R}^{m \times n}$ be standard iid Gaussian. With probability above $1 - e^{-c_1(n-m)}$,

$$
\frac{\|v\|_1}{\|v\|_2} \geq \frac{c_2 \sqrt{m}}{\sqrt{\log(n/m)}}, \quad \forall v \in \text{Null}(A) \setminus \{0\}
$$

where c_1 and c_2 are absolute constants.

Immediately, for random A and with high probability

$$
\|x^*\|_0 < \frac{Cm}{\log(n/m)} \Rightarrow x^* \text{ is recoverable.}
$$
Theorem:

There exist good measurement matrices \(A \in \mathbb{R}^{m \times n} \) so that if \(x^* \geq 0 \) and \(\| x^* \|_0 \leq \lfloor m/2 \rfloor \),

then

\[x^* = \arg \min \{ \| x \|_1 : Ax = Ax^*, x \geq 0 \} . \]

In particular, (generalized) Vandermonde matrices (including partial DFT matrices) are good.

(“\(x^* \geq 0 \)” can be replaced by “\(\text{sign}(x^*) \) is known”.)
Further Results:

- Better estimates on constants (still uncertain)
- Some non-random matrices are good too (e.g. partial transforms)

Implications of CS:

- Theoretically, sample size $n \rightarrow O(k \log (n/k))$
- Work-load shift: encoder \rightarrow decoder
- New paradigm in data acquisition?
- In practice, compression ratio not dramatic, but
 — longer battery life for space devises?
 — shorter scan time for MRI? ...
Related ℓ_1-minimization Problems

\[
\begin{align*}
\min \{ \|x\|_1 : Ax = b \} & \quad \text{ (noiseless)} \\
\min \{ \|x\|_1 : \|Ax - b\| \leq \epsilon \} & \quad \text{ (noisy)} \\
\min \mu \|x\|_1 + \|Ax - b\|^2 & \quad \text{ (unconstrained)} \\
\min \mu \|\Phi x\|_1 + \|Ax - b\|^2 & \quad \text{ (} \Phi^{-1} \text{ may not exist)} \\
\min \mu \|G(x)\|_1 + \|Ax - b\|^2 & \quad \text{ (} G(\cdot) \text{ may be nonlinear)} \\
\min \mu \|G(x)\|_1 + \nu \|\Phi x\|_1 + \|Ax - b\|^2 & \quad \text{ (mixed form)}
\end{align*}
\]

- Φ may represent wavelet or curvelet transform
- $\|G(x)\|_1$ can represent isotropic TV (total variation)
- Objectives are not necessarily strictly convex
- Objectives are non-differentiable
Algorithmic Challenges

Large-scale, non-smooth optimization problems with dense data that require low storage and fast algorithms.

- $1k \times 1k$, 2D-images give over 10^6 variables.
- “Good" matrices are dense (random, transforms...).
- Often (near) real-time processing is required.
- Matrix factorizations are out of question.
- Algorithms must be built on Av and A^Tv.
Algorithm Classes (I)

Greedy Algorithms:
- Marching Pursuits (Mallat-Zhang, 1993)
- OMP (Gilbert-Tropp, 2005)
- StOMP (Donoho et al, 2006)
- Chaining Pursuit (Gilbert et al, 2006)
- Cormode-Muthukrishnan (2006)
- HHS Pursuit (Gilbert et al, 2006)

Some require special encoding matrices.
Algorithm Classes (II)

Introducing extra variables, one can convert compressive sensing problems into smooth linear or 2nd-order cone programs; e.g. \(\min \{ \| x \|_1 : Ax = b \} \Rightarrow \text{LP} \)

\[
\min \{ e^T x_+ - e^T x_- : Ax_+ - Ax_- = b, x_+, x_- \geq 0 \}
\]

Smooth Optimization Methods:

- Projected Gradient: GPSR (Figueiredo-Nowak-Wright, 07)
- Interior-point algorithm: \(\ell_1 \)-LS (Boyd et al 2007)
 (pre-conditioned CG for linear systems)
- \(\ell_1 \)-Magic (Romberg 2006)
Fixed-Point Shrinkage

\[\min \mu \|x\|_1 + f(x) \iff x = \text{Shrink}(x - \tau \nabla f(x), \tau \mu) \]

where \(\text{Shrink}(y, t) = \text{sign}(y) \circ \max(|y| - t, 0) \)

Fixed-point iterations:

\[x^{k+1} = \text{Shrink}(x^k - \tau \nabla f(x^k), \tau \mu) \]

- directly follows from forward-backward operator splitting (a long history in PDE and optimization since 1950’s)
- Rediscovered in signal processing by many since 2000’s.
- Convergence properties analyzed extensively
Forward-Backward Operator Splitting

Derivation:

\[
\begin{align*}
\min \mu \|x\|_1 + f(x) & \iff 0 \in \mu \partial \|x\|_1 + \nabla f(x) \\
& \iff -\tau \nabla f(x) \in \tau \mu \partial \|x\|_1 \\
& \iff x - \tau \nabla f(x) \in x + \tau \mu \partial \|x\|_1 \\
& \iff (I + \tau \mu \partial \| \cdot \|_1) x \ni x - \tau \nabla f(x) \\
& \iff \{x\} \ni (I + \tau \mu \partial \| \cdot \|_1)^{-1}(x - \tau \nabla f(x)) \\
& \iff x = \text{shrink}(x - \tau \nabla f(x), \tau \mu)
\end{align*}
\]

\[
\min \mu \|x\|_1 + f(x) \iff x = \text{Shrink}(x - \tau \nabla f(x), \tau \mu)
\]
New Convergence Results

The following are obtained by E. Hale, W, Yin and YZ, 2007.

- **Finite Convergence:** for \(k = O(1/\tau \mu) \)

 \[
 x_j^k = 0, \quad \text{if } x_j^* = 0
 \]

 \[
 \text{sign}(x_j^k) = \text{sign}(x_j^*), \quad \text{if } x_j^* \neq 0
 \]

- **Rate of convergence depending on “reduced” Hessian:**

 \[
 \lim_{k \to \infty} \sup \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} \leq \frac{\kappa(H_{EE}^*) - 1}{\kappa(H_{EE}^*) + 1}
 \]

 where \(H_{EE}^* \) is the sub-Hessian corresponding to \(x^* \neq 0 \).

 The bigger \(\mu \) is, the sparser \(x^* \) is, the faster is the convergence.
Fixed-Point Continuation

For each $\mu > 0$,

$$x = Shrink(x - \tau \nabla f(x), \tau \mu) \implies x(\mu)$$

Idea: approximately follow the path $x(\mu)$

FPC:
Set μ to a larger value. Set initial x.
DO until μ it reaches its “right” value
 • Adjust stopping criterion
 • Start from x, do fixed-point iterations until “stop”
 • Decrease μ value
END DO
Continuation Makes It Kick

(a) $\mu = 200$

(b) $\mu = 1200$

- **With Continuation**
- **Without Continuation**

$\frac{\|x - x_s\|}{\|x_s\|}$

Iteration

10^{-3}

10^{-2}

10^{-1}

10^0
Continuation make fixed-point shrinkage practical.

FPC appears more robust than StOMP and GPSR, and is faster most times. ℓ_1-LS is generally slower.

1st-order methods slows down on less sparse problems.

2-order methods have their own set of problems.

A comprehensive evaluation is still needed.
Total Variation Regularization

Discrete (isotropic) TV for a 2D variable:

\[TV(u) = \sum_{i,j} \| (Du)_{ij} \| \]

(1-norm of 2-norms of 1st-order finite difference vectors)

- convex, non-linear, non-differentiable
- suitable for sparse \(Du \), not sparse \(u \)

A mixed-norm formulation:

\[\min_u \mu TV(u) + \lambda \| \Phi u \|_1 + \| Au - b \|_2^2 \]
Consider linear operator A being a convolution:

$$\min_u \mu \sum_{i,j} \| (Du)_{ij} \| + \| Au - b \|^2$$

Introducing $w_{ij} \in \mathbb{R}^2$ and a penalty term:

$$\min_{u,w} \mu \sum_{i,j} \| w_{ij} \| + \rho \| w - Du \|^2 + \| Au - b \|^2$$

Exploit structure by alternating minimization:

- For fixed u, w has a closed-form solution.
- For fixed w, quadratic can be minimized by 3 FFTs.

(similarly for A being a partial discrete Fourier matrix)
MRI Reconstruction from 15% Fourier Coefficients

Reconstruction time \(\leq 0.1 \text{s} \) on a Dell PC (3GHz Pentium).
Image Deblurring: Comparison to Matlab Toolbox

Original image: 512x512
Blurry & Noisy SNR: 5.1dB.
deconvlucy: SNR=6.5dB, t=8.9

deconvreg: SNR=10.8dB, t=4.4
deconvwnr: SNR=10.8dB, t=1.4
MxNopt: SNR=16.3dB, t=1.6

512 × 512 image, CPU time 1.6 seconds
The End

Thank You!