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Introduction
Solving the QPs (quadratic programs)

Three very different approaches
Comparison on medium and large sets

What is Machine Learning?

Which tasks in Machine Learning?
How are Support Vector Machines used?

We consider classification and testing of data in areas such as:

computer processing of handwriting (USPS etc)

speech recognition

identification of faces, irises etc

spam filtering

categorization of newspaper articles

analysis of medical or experimental data

We borrowed the following introductory slides:

Hans D Mittelmann Support Vector Machines in Machine Learning
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History of SVM

SVM is a classifier derived from statistical 
learning theory by Vapnik and Chervonenkis
SVM was first introduced in COLT-92 
SVM becomes famous when, using pixel maps 
as input, it gives accuracy comparable to 
sophisticated neural networks with elaborated 
features in a handwriting recognition task
Currently, SVM is closely related to:

Kernel methods, large margin classifiers, reproducing 
kernel Hilbert space, Gaussian process
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Two Class Problem: Linear Separable 
Case

Class 1

Class 2

Many decision 
boundaries can 
separate these two 
classes
Which one should 
we choose?
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Example of Bad Decision Boundaries

Class 1

Class 2

Class 1

Class 2
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Good Decision Boundary: Margin 
Should Be Large

The decision boundary should be as far away 
from the data of both classes as possible

We should maximize the margin, m

Class 1

Class 2

m
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The Optimization Problem

Let {x1, ..., xn} be our data set and let yi ∈
{1,-1} be the class label of xi

The decision boundary should classify all points 
correctly ⇒
A constrained optimization problem
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The Optimization Problem

We can transform the problem to its dual

This is a quadratic programming (QP) problem
Global maximum of αi can always be found

w can be recovered by
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Characteristics of the Solution

Many of the αi are zero
w is a linear combination of a small number of data
Sparse representation

xi with non-zero αi are called support vectors (SV)
The decision boundary is determined only by the SV
Let tj (j=1, ..., s) be the indices of the s support 
vectors. We can write

For testing with a new data z
Compute                                                      and
classify z as class 1 if the sum is positive, and class 2 
otherwise
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α6=1.4

A Geometrical Interpretation

Class 1

Class 2

α1=0.8

α2=0

α3=0

α4=0

α5=0
α7=0

α8=0.6

α9=0

α10=0
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Some Notes

There are theoretical upper bounds on the error 
on unseen data for SVM

The larger the margin, the smaller the bound
The smaller the number of SV, the smaller the bound

Note that in both training and testing, the data 
are referenced only as inner product, xTy

This is important for generalizing to the non-linear 
case
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How About Not Linearly Separable

We allow “error” ξi in classification

Class 1

Class 2
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Soft Margin Hyperplane

Define ξi=0 if there is no error for xi
ξi are just “slack variables” in optimization theory

We want to minimize
C : tradeoff parameter between error and margin

The optimization problem becomes
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The Optimization Problem

The dual of the problem is

w is also recovered as
The only difference with the linear separable 
case is that there is an upper bound C on αi

Once again, a QP solver can be used to find αi
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Extension to Non-linear Decision 
Boundary

Key idea: transform xi to a higher dimensional 
space to “make life easier”

Input space: the space xi are in
Feature space: the space of φ(xi) after transformation

Why transform?
Linear operation in the feature space is equivalent to 
non-linear operation in input space
The classification task can be “easier” with a proper 
transformation. Example: XOR
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Extension to Non-linear Decision 
Boundary

Possible problem of the transformation
High computation burden and hard to get a good 
estimate

SVM solves these two issues simultaneously
Kernel tricks for efficient computation
Minimize ||w||2 can lead to a “good” classifier

φ(  )

φ(  )

φ(  )
φ(  )φ(  )

φ(  )

φ(  )φ(  )

φ(.) φ(  )

φ(  )

φ(  )
φ(  )
φ(  )

φ(  )

φ(  )

φ(  )
φ(  ) φ(  )

Feature spaceInput space



03/03/06 CSE 802. Prepared by Martin Law 18

Example Transformation

Define the kernel function K (x,y) as 

Consider the following transformation

The inner product can be computed by K
without going through the map φ(.)
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Kernel Trick

The relationship between the kernel function K and 
the mapping φ(.) is

This is known as the kernel trick

In practice, we specify K, thereby specifying φ(.) 
indirectly, instead of choosing φ(.)
Intuitively, K (x,y) represents our desired notion of 
similarity between data x and y and this is from our 
prior knowledge
K (x,y) needs to satisfy a technical condition 
(Mercer condition) in order for φ(.) to exist
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Examples of Kernel Functions

Polynomial kernel with degree d

Radial basis function kernel with width σ

Closely related to radial basis function neural networks

Sigmoid with parameter κ and θ

It does not satisfy the Mercer condition on all κ and θ

Research on different kernel functions in different 
applications is very active 
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Example of SVM Applications: 
Handwriting Recognition
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Modification Due to Kernel Function

Change all inner products to kernel functions
For training,

Original

With kernel 
function
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Modification Due to Kernel Function

For testing, the new data z is classified as class 
1 if f ≥0, and as class 2 if f <0

Original

With kernel 
function
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Example

Suppose we have 5 1D data points
x1=1, x2=2, x3=4, x4=5, x5=6, with 1, 2, 6 as class 1 
and 4, 5 as class 2 ⇒ y1=1, y2=1, y3=-1, y4=-1, y5=1

We use the polynomial kernel of degree 2
K(x,y) = (xy+1)2

C is set to 100

We first find αi (i=1, …, 5) by
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Example

By using a QP solver, we get
α1=0, α2=2.5, α3=0, α4=7.333, α5=4.833
Note that the constraints are indeed satisfied
The support vectors are {x2=2, x4=5, x5=6}

The discriminant function is

b is recovered by solving f(2)=1 or by f(5)=-1 or 
by f(6)=1, as x2, x4, x5 lie on                           
and all give b=9
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Example

Value of discriminant function

1 2 4 5 6

class 2 class 1class 1
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Multi-class Classification

SVM is basically a two-class classifier
One can change the QP formulation to allow 
multi-class classification
More commonly, the data set is divided into two 
parts “intelligently” in different ways and a 
separate SVM is trained for each way of division
Multi-class classification is done by combining 
the output of all the SVM classifiers

Majority rule
Error correcting code
Directed acyclic graph
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The Computational Part

Are they standard optimization problems?
Yes, but size poses problems

Generic form of the (dual) QP

min
1
2

αT Qα− eT α

subject to

yT α = 0

0 <= α <= c

Here y binary labels, Q spd kernel matrix, c penalty for errors

This problem is convex

Hans D Mittelmann Support Vector Machines in Machine Learning
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The Computational Part

Solving the QP
It can be huge

Method of choice for solving large (but not huge) QPs with
sparse matrix Q

interior point methods

Method of choice for solving medium size QPs with dense
matrix Q

active set methods (QP extension of Simplex)

For SVM QPs are large and dense

challenge for both methods
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All can deal with large cases

SVMlight (Joachims, Cornell)

heuristic to choose small set (10) of variables to vary

SVM-QP (Scheinberg, IBM Watson RC)

Special implementation of Simplex for SVM-QP

Core-SVM (Tsang, Kwok, Cheung, Hongkong U Sci Technol)

Utilizing MEB (minimal enclosing ball) algorithm

approximate but problem could be huge
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SVMlight

Support Vector Machine
Author: Thorsten Joachims <thorsten@joachims.org> 

Cornell University 
Department of Computer Science

Developed at: 
University of Dortmund, Informatik, AI-Unit 

Collaborative Research Center on ’Complexity Reduction in Multivariate Data’ (SFB475)

Version: 6.01 
Date: 02.09.2004

Overview

SVMlight is an implementation of Support Vector Machines (SVMs) in C. The main features of the program are the 
following: 

fast optimization algorithm
working set selection based on steepest feasible descent
"shrinking" heuristic
caching of kernel evaluations
use of folding in the linear case 

solves classification and regression problems. For multivariate and structured outputs use SVMstruct.
solves ranking problems (e. g. learning retrieval functions in STRIVER search engine).
computes XiAlpha-estimates of the error rate, the precision, and the recall
efficiently computes Leave-One-Out estimates of the error rate, the precision, and the recall
includes algorithm for approximately training large transductive SVMs (TSVMs) (see also Spectral Graph Transducer)
can train SVMs with cost models and example dependent costs
allows restarts from specified vector of dual variables
handles many thousands of support vectors
handles several hundred-thousands of training examples
supports standard kernel functions and lets you define your own
uses sparse vector representation 

 SVMstruct: SVM learning for multivariate and structured outputs like trees, sequences, and sets (available here).

Description

SVMlight is an implementation of Vapnik’s Support Vector Machine [Vapnik, 1995] for the problem of pattern recognition, 
for the problem of regression, and for the problem of learning a ranking function. The optimization algorithms used in 

SVMlight are described in [Joachims, 2002a ]. [Joachims, 1999a]. The algorithm has scalable memory requirements and can 
handle problems with many thousands of support vectors efficiently. 

The software also provides methods for assessing the generalization performance efficiently. It includes two efficient 
estimation methods for both error rate and precision/recall. XiAlpha-estimates [Joachims, 2002a, Joachims, 2000b] can be 
computed at essentially no computational expense, but they are conservatively biased. Almost unbiased estimates provides 

leave-one-out testing. SVMlight exploits that the results of most leave-one-outs (often more than 99%) are predetermined 
and need not be computed [Joachims, 2002a].

New in this version is an algorithm for learning ranking functions [Joachims, 2002c]. The goal is to learn a function from 
preference examples, so that it orders a new set of objects as accurately as possible. Such ranking problems naturally occur 
in applications like search engines and recommender systems.

Futhermore, this version includes an algorithm for training large-scale transductive SVMs. The algorithm proceeds by 
solving a sequence of optimization problems lower-bounding the solution using a form of local search. A detailed 
description of the algorithm can be found in [Joachims, 1999c]. A similar transductive learner, which can be thought of as a 
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Core Vector Machines:
Fast SVM Training on Very Large Data Sets

Ivor W. Tsang IVOR@CS.UST.HK
James T. Kwok JAMESK@CS.UST.HK
Pak-Ming Cheung PAKMING@CS.UST.HK
Department of Computer Science
The Hong Kong University of Science and Technology
Clear Water Bay
Hong Kong

Editor: Nello Cristianini

Abstract
Standard SVM training has O(m3) time and O(m2) space complexities, where m is the training

set size. It is thus computationally infeasible on very large data sets. By observing that practical
SVM implementations only approximate the optimal solution by an iterative strategy, we scale
up kernel methods by exploiting such “approximateness” in this paper. We first show that many
kernel methods can be equivalently formulated as minimum enclosing ball (MEB) problems in
computational geometry. Then, by adopting an efficient approximate MEB algorithm, we obtain
provably approximately optimal solutions with the idea of core sets. Our proposed Core Vector
Machine (CVM) algorithm can be used with nonlinear kernels and has a time complexity that is
linear in m and a space complexity that is independent of m. Experiments on large toy and real-
world data sets demonstrate that the CVM is as accurate as existing SVM implementations, but is
much faster and can handle much larger data sets than existing scale-up methods. For example,
CVM with the Gaussian kernel produces superior results on the KDDCUP-99 intrusion detection
data, which has about five million training patterns, in only 1.4 seconds on a 3.2GHz Pentium–4
PC.
Keywords: kernel methods, approximation algorithm, minimum enclosing ball, core set, scalabil-
ity

1. Introduction
In recent years, there has been a lot of interest on using kernels in various machine learning prob-
lems, with the support vector machines (SVM) being the most prominent example. Many of these
kernel methods are formulated as quadratic programming (QP) problems. Denote the number of
training patterns by m. The training time complexity of QP is O(m3) and its space complexity is at
least quadratic. Hence, a major stumbling block is in scaling up these QP’s to large data sets, such
as those commonly encountered in data mining applications.

To reduce the time and space complexities, a popular technique is to obtain low-rank approxi-
mations on the kernel matrix, by using the Nyström method (Williams and Seeger, 2001), greedy
approximation (Smola and Schölkopf, 2000), sampling (Achlioptas et al., 2002) or matrix decom-
positions (Fine and Scheinberg, 2001). However, on very large data sets, the resulting rank of the
kernel matrix may still be too high to be handled efficiently.

c 2005 Ivor W. Tsang, James T. Kwok and Pak-Ming Cheung.
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Frequently used datasets
small, medium, large

Adult dataset (2-6 MB, depending on format)

32560 elements, 123 attributes
predict income >50K/year from census data

Web dataset (8-9 MB)

49749 elements, 300 attributes
log of anonymous visitors of www.microsoft.com

USPS dataset (500-600 MB)

266079 elements, 675 attributes
handwriting data from USPS

Just show results for learning. Testing was done also,
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REAL data! All with RBF kernel

Results, adult set (AMD-64, 2.4GHz)

===========================================
code params time SV BSV

===========================================
SVMlight g=.1 14466 9959 3200

g=.01 7200 1703 9783
g=.001 937 196 11361

-------------------------------------------
SVM-QP sh=10

sh=100 460 1317 9953
sh=1000 278 143 11384

-------------------------------------------
CVM g=1e-1 1309 9224 3353

g=1e-2 828 1278 9879
g=1e-3 443 190 11367
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REAL data! All with RBF kernel

Results, web set (AMD-64, 2.4GHz)

===========================================
code params time SV BSV

===========================================
SVMlight g=.1 1354 4025 495

g=.01 3581 2097 825
g=.001 694 437 1645

--------------------------------------------
SVM-QP sh=10 715 3446 527

sh=100 174 1404 905
sh=1000 92 297 1702

-------------------------------------------
CVM g=1e-1 407 3650 508

g=1e-2 358 1458 839
g=1e-3 266 397 1675
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REAL data! All with RBF kernel

Results, USPS set (AMD-64, 2.4GHz)

===========================================
code params time SV BSV

===========================================
SVMlight g=.01 1713 2906 0

g=.001 1349 1371 1
g=.0001 4308 560 3296

-------------------------------------------
SVM-QP sh=100 1591 2906 0

sh=1000 837 1370 1
sh=10000 5265 564 3293

-------------------------------------------
CVM g=1e-2 2145 2898 0

g=1e-3 1142 1372 1
g=1e-4 2118 593 3279
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REAL data! All with RBF kernel

Observations, Future Work

We notice

SVM-QP treats explicitly variables (active) on upper or
lower bounds

SVMlight varies very few variables at a time and
convergence of variables to bounds is slow

SVM-QP is better if many variables at bounds

CVM is slower than SVM-QP if many SV at bounds (BSV)

Future work

Collaborate with K. Scheinberg on development of
SVM-QP
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