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The data assimilation problem
• Forecast model (PDE) 

predicts values of 
dynamical variables on 
a discretized grid 
(background)

• Observations are noisy 
and sparse

• What is the “true” 
current state?



The “data mining” challenge
• Data assimilation is currently the most 

expensive part of numerical weather 
prediction 

• Current weather models have ~107 
dynamical variables and ~109 in the future

• Current observing networks produce ~105 to 
~106 measurements every 6 hr

• New satellite observing platforms will 
generate ~107 measurements every 6 hr



The mathematical challenge
• The dynamical variables in a spatio-temporal 

model can’t all be observed
• Probably the biggest impediment to better 

weather forecasts at the moment
• Can be forward in time (weather prediction) 

or backward in time (climate modeling)
• Methods must be fast to be practical
• Many potential applications: blood flow, 

cardiac and immune system dynamics



Why is weather so hard to predict?

• Dynamics occur at multiple scales 
• Dynamics are chaotic (“butterfly effect”)
• Global forecast uncertainty roughly doubles 

every 24-36 hours
• Uncertainty varies in space and time 

(“errors of the day”)



Ensemble forecasting

• Simple (but effective) way to assess the 
uncertainty in a weather forecast

• Basic idea: run many forecasts from 
statistically equivalent estimates of the 
current atmospheric state vector

• Assess covariance as function of space and 
forecast time



“Spaghetti plot”
• Contours reflect uncertainties in atmospheric 

pressure in this 72-hour forecast



The NCEP Global Forecast System

Spectral model: 3-d Navier-Stokes, plus:
– Atmospheric chemistry (ozone, aerosols)
– Cloud physics (active research area)
– Complex boundary conditions (sea surface, 

mountains, plants, soils, etc.)
• Principal dynamical variables:

– Surface pressure
– Virtual temperature
– Vorticity and divergence of the wind field



Data assimilation: Basic approach

• Treat the observations and initial condition 
as random variables

• Statistically interpolate between the model 
grid and observations to make “best guess” 
of the true initial condition

• Estimate the uncertainty in the guess
• Need a priori estimates of the uncertainties 

in both the measurements and the 
background (forecast)



Sequential assimilation



Background (forecast)

Data assimilation

Analysis (updated estimate
of the initial condition)

Observations

Model

Basic algorithm



The estimation problem

observations:

model variables:
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The estimation problem

• When the errors are Gaussian and the 
underlying dynamics are linear, the 
minimizer of J is “optimal” (unbiased, 
minimum variance)

• The forecast uncertainty Pb can be 
estimated using ensemble forecasts

• Weather service uses seasonally averaged 
Pb (ignores errors of the day)



The dimensionality problem

• To evaluate J, we must invert Σ and Pb .

    Σ is p×p and Pb  is n×n.

• For typical weather models, n~107 to 109   
and p~105 to 107!

• The computational complexity of matrix 
inversion is O(n3).

• Inverting a 100×100 matrix takes ~1 sec.
• A 107×107 matrix takes ~1015 sec!



Maryland/ASU idea: use chaos to 
reduce the dimensionality

• A medium-resolution weather model has 
~3000 variables in a typical 1000 × 1000 
km synoptic region (~Texas)

• Find the dimension of the subspace spanned 
by a typical ensemble of 100-200 forecast 
vectors over a Texas-sized region

• The forecast uncertainty evolves along a 
~40 dimensional “unstable manifold” (Patil 
et al., 2001)



The local ensemble idea

• Take ensemble of 100-200 forecast vectors over 
Texas-sized patch

• Each forecast vector is ~3000 dimensional
• Their span is typically  ~40 dimensional for          

6-24 hr forecasts



Important implications

• The “weather attractor” is locally low-dimensional 
over typical synoptic regions

• The spread in the forecast ensemble is in the 
direction of most rapidly increasing uncertainty

• A data assimilation algorithm need only reduce 
the uncertainty in this low-dimensional subspace 
in any given synoptic region

• The relevant covariance matrix is only 40 × 40 
and can be determined by ensemble forecasts

• Leads to an embarrassingly parallel algorithm



The local ensemble transform 
Kalman filter (LETKF)

• Perform the data assimilation step 
independently in each local region

• The grid point in the center of each patch 
has the most accurate analysis

• Assemble the center-point local analyses 
into a global grid, then advance to the next 
forecast time



Computational implementation

• Patches centered at each point of horizontal grid
• Update the initial condition at center of each patch



Fast, parallel implementation
• Only operations on ~40×40 matrices are 

needed in the analyses
• Assimilation of 500,000 observations into   

3-million variable model takes 10 min on 
20-cpu Beowulf cluster

• Model independent approach: the same 
algorithm has been applied to three different 
weather models (NCEP GFS, NASA 
fvGCM, regional NAM)



“Perfect model” scenario



Evaluation method



Results with simulated observations
• Observations are created by adding 

Gaussian random noise to the true state (1 K 
for temperature, 1 m/s for wind vector 
components, and 1 hPa for surface pressure)

• No asynchronous observations
• Full and realistic observing networks
• Compare the resulting analysis to the “true” 

state consisting of 45-60 days of simulated 
weather



Representative results: 
Temperature



Error in the u-wind analysis at 
300 hPa



Results with real observations
• Observations are assimilated from a 3-hour 

window centered at analysis time (no time 
interpolation)

• All observations are assimilated with except for 
satellite radiances (~250,000 observations)

• 40-member ensemble, multiplicative variance 
inflation (25% in NH extra-tropics, 20% in 
tropics, and 15% in SH extra-tropics)

• April 2004 version of operational GFS
• Data are taken from January-February 2004
• Four cycles per day for 30 days



Comparisons with NCEP analyses

• “Benchmark” analysis: NCEP analysis prepared 
with the same dataset (no satellite data) with T62 
version of the model

• “Operational” analysis: high-resolution (T254) 
model, includes satellite data

• Compute |LETKF−Operational| and |
LETKF−Operational| − |Benchmark−Operational| 



Difference Between the LETKF and 
Operational NCEP Temperature Analyses 

at 600 hPa

The rms difference is calculated over 84 analysis cycles



|LETKF−Operational| − |Benchmark−Operational|
600 hPa Temperature

Negative values indicate that the LETKF analysis is more similar 
to the operational analysis than the benchmark  



|LETKF−Operational| − |Benchmark−Operational|
200 hPa Temperature

Negative values indicate that the LETKF analysis is more similar 
to the operational analysis than the benchmark  



|LETKF−Operational| − |Benchmark − Operational|
200 hPa u-wind

Negative values indicate that the LETKF analysis is more similar 
to the operational analysis than the benchmark  



|LETKF−Operational| − |Benchmark−Operational|
50 hPa u-wind

Negative values indicate that the LETKF analysis is more similar 
to the operational analysis than the benchmark  



Conclusions

• The LETKF with a 40-member ensemble provides 
a stable analysis cycle for real observations

• In areas of high observational density, the LETKF 
analysis is very similar to the operational NCEP 
analysis

• The LETKF efficiently propagates information 
from data-dense to data-sparse regions

• Work in progress:
– Time interpolation (“4d”) implementation and tuning
– Verification of short term forecasts against observations
– Implementation of bias correction 


