Numerical Methods for Rapid Computation of PageRank

Gene H. Golub

Stanford University
Stanford, CA
USA

Joint work with Chen Greif
Outline

1 Markov Chains and PageRank
 • Definition

2 Acceleration Techniques
 • Sequence extrapolation
 • Adaptive Computation
 • Other Techniques

3 Arnoldi Based Methods
 • A refined Arnoldi algorithm
 • Sensitivity
 • Numerical experiments
1 Markov Chains and PageRank
 • Definition

2 Acceleration Techniques
 • Sequence extrapolation
 • Adaptive Computation
 • Other Techniques

3 Arnoldi Based Methods
 • A refined Arnoldi algorithm
 • Sensitivity
 • Numerical experiments
Stationary Distribution Vector of a Transition Probability Matrix

We are seeking a row vector π^T that satisfies $\pi^T = \pi^T P$ where P is a square stochastic matrix, with nonnegative entries between 0 and 1, and $Pe = e$, where e is a vector of all-ones.

Theorem

Perron(1907)-Frobenius(1912): A nonnegative irreducible matrix has a simple real eigenvalue equal to its spectral radius, whose associated eigenvector is a vector all of whose entries are nonnegative.

What happens when P is stochastic and possibly reducible?
What Is PageRank?

Definition
Given a Webpage database, the PageRank of the ith Webpage is the ith element π_i of the stationary distribution vector π that satisfies $\pi^T P = \pi^T$, where P is a matrix of weights of webpages that indicate their importance.
What Is PageRank?

Definition
Given a Webpage database, the PageRank of the ith Webpage is the ith element π_i of the stationary distribution vector π that satisfies $\pi^T P = \pi^T$, where P is a matrix of weights of webpages that indicate their importance.

Difficulties
1. P is too large (size possibly in the billions) for forming any of our favorite decompositions.
2. P could be reducible, contain zero rows, and other difficulties of this sort.
What Is PageRank?

Definition

Given a Webpage database, the PageRank of the \(i \)th Webpage is the \(i \)th element \(\pi_i \) of the stationary distribution vector \(\pi \) that satisfies \(\pi^T P = \pi^T \), where \(P \) is a matrix of weights of webpages that indicate their importance.

Difficulties

1. \(P \) is too large (size possibly in the billions) for forming any of our favorite decompositions.
2. \(P \) could be reducible, contain zero rows, and other difficulties of this sort.

How do we modify \(P \) so that there is a unique solution?
The fundamental idea of Brin & Page: Importance of a webpage is determined not by its contents but rather by which pages link to it. Apply the power method to a web link graph.
Some issues with web link graphs

<table>
<thead>
<tr>
<th>Difficulties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The existence of dangling nodes (correspond to an all-zero row in the matrix): could have very important pages that have no outlinks. (e.g. the U.S. constitution!)</td>
</tr>
<tr>
<td>2</td>
<td>Periodicity: a cyclic path in the Webgraph. (e.g. You point only to your mom’s webpage and she points only to yours.)</td>
</tr>
</tbody>
</table>

Simple example:

\[P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \]
Some issues with web link graphs

Difficulties

1. **The existence of dangling nodes**: correspond to an all-zero row in the matrix: could have very important pages that have no outlinks. (e.g. the U.S. constitution!)

2. **Periodicity**: a cyclic path in the Webgraph. (e.g. You point only to your mom’s webpage and she points only to yours.)

Simple example:

\[P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

Solution

Set \(M(c) = cP + (1 - c)E \), where \(E \) is a positive rank-1 matrix.
The matrix $M(c)$

- We have $M(c) > 0$ which yields a unique solution. But what is the significance of the stationary probability vector?
- $M(c)$ is a Markov chain with positive entries, and

$$M(c)z(c) = z(c).$$

Therefore for $c < 1$, $z(c)$ is unique (under proper scaling).
For the identity matrix, $P = I$, no unique stationary probability distribution, but for $M(c) = cl + (1 - c)ee^T/n$ we are converging to

$$z(c) = \frac{1}{n} e.$$
The significance of the parameter \(c \)

- \(c \) is the probability that a surfer will follow an outlink (as opposed to jump randomly to another Webpage).
- \(c = 0.85 \) was the choice in the Brin & Page model.
- Like regularization: small value leads to a more stable computation, but further away from true solution.
For Google, it all boiled down originally to solving the eigenvalue problem

\[x = Mx \]

using the power method

\[x^{(k+1)} = Mx^{(k)} . \]
Let $Mz_i = \lambda_i z_i$. For $|\lambda_i| \neq |\lambda_j|$ we have

$$x^{(0)} = \sum \alpha_i z_i,$$

and

$$x^{(k)} = \sum \alpha_i \lambda_i^k z_i,$$

with $\|x^{(k)}\|_1 = 1$ and $x \geq 0$.

After normalization, for $\lambda_1 = 1$ we have

$$x^{(k)} = z_1 + \sum_{j=2}^{n} \beta_j \lambda_j^k z_j.$$
The Eigenvalues of the PageRank Matrix

Theorem

(Elegant proof due to Eldén)

Let P be a column-stochastic matrix with eigenvalues \{1, \lambda_2, \lambda_3, \ldots, \lambda_n\}. Then the eigenvalues of $M(c) = cP + (1 - c)ve^T$, where $0 < c < 1$ and v is a nonnegative vector with $e^Tv = 1$, are

\[
\{1, c\lambda_2, c\lambda_3, \ldots, c\lambda_n\}.
\]

This implies

\[
\frac{|\lambda_j|}{|\lambda_1|} \leq c.
\]
Outline

1 Markov Chains and PageRank
 - Definition

2 Acceleration Techniques
 - Sequence extrapolation
 - Adaptive Computation
 - Other Techniques

3 Arnoldi Based Methods
 - A refined Arnoldi algorithm
 - Sensitivity
 - Numerical experiments
Quadratic Extrapolation
(Kamvar, Haveliwala, Manning, G.)

Slowly convergent series can be replaced by series that converge to the same limit at a much faster rate.

Idea: Estimate components of current iterate in the directions of second and third eigenvectors, and eliminate them.
Suppose M has three distinct eigenvalues. The minimal polynomial is given by

$$P_M(\lambda) = \gamma_0 + \gamma_1 \lambda + \gamma_2 \lambda^2 + \gamma_3 \lambda^3.$$

By the Cayley-Hamilton theorem, $P_M(M) = 0$. Hence for any vector z,

$$P_M(M)z = (\gamma_0 + \gamma_1 M + \gamma_2 M^2 + \gamma_3 M^3)z = 0.$$
Set $z = x^{(k-3)}$ and use the fact that $x^{(k-2)} = Mx^{(k-3)}$ and so on. Thus,

$$(x^{(k-2)} - x^{(k-3)})\gamma_1 + (x^{(k-1)} - x^{(k-3)})\gamma_2 + (x^{(k)} - x^{(k-3)})\gamma_3 = 0.$$

Defining

$$y^{(k-j)} = x^{(k-j)} - x^{(k-3)}, \quad j = 1, 2, 3,$$

and setting $\gamma_3 = 1$ (to avoid getting a trivial solution $\gamma = \mathbf{0}$), get

$$(y^{(k-2)} y^{(k-1)})[\gamma_1 \quad \gamma_2]^T = -y^{(k)}.$$

Now, since M has more than three eigenvalues, solve a least squares problem.
The dynamic nature of the web

This problem involves a matrix which is changing over time.

- States increase and decrease, i.e. new websites are introduced and old websites die.
- Websites are continually changing. M is a function of time and so is its dimension.
Adaptive Computation
(joint with Kamvar and Haveliwala)

Most pages converge rapidly. Basic idea: when the PageRank of a page has converged, stop recomputing it.

\[
\begin{align*}
 x_N^{(k+1)} &= M_N x^{(k)}; \\
 x_C^{(k+1)} &= x_C^{(k)}.
\end{align*}
\]

- Use the previous vector as a start vector.
- Nice speedup, but not great. Why? The old pages converge quickly, but the new pages still take long to converge. Web constantly changes! Addition, deletion, change of existing pages...
- But, if you use Adaptive PageRank, you save the computation of the old pages.
Example: Stanford-Berkeley, $n \approx 700000$
Other Effective Approaches

- Aggregation/Disaggregation. (Stewart, Langville & Meyer,)
- Approaches related to permutations of the Google matrix. (Del Corso et. al., Kamvar et. al.)
- Linear system formulation. (Arasu et. al.)

and more...

Survey paper:
A survey of eigenvector methods of Web information retrieval
by Amy Langville and Carl Meyer.

Stability and convergence analysis: Ipsen & Kirkland.
Outline

1. Markov Chains and PageRank
 - Definition

2. Acceleration Techniques
 - Sequence extrapolation
 - Adaptive Computation
 - Other Techniques

3. Arnoldi Based Methods
 - A refined Arnoldi algorithm
 - Sensitivity
 - Numerical experiments
Arnoldi method:
The Arnoldi method is generally used for generating a small upper Hessenberg that approximates some of the eigenvalues of the original matrix. When Q is orthogonal,

$$Q^T MQ(Q^T x) = \lambda(Q^T x).$$

1. Find $H = Q^T MQ$ upper Hessenberg, then perform the computations for H instead of M.

2. M is n-by-n and is huge, but we terminate the process after k steps. Resulting H is $(k + 1)$-by-k.

Using the Arnoldi method for PageRank (joint with Chen Greif)
Computational Cost

1. Main cost: One matrix-vector product (with original large matrix) per iteration.
2. Inner products and norm computations.
3. Power method cheaper but not by much if matrix-vector products dominate.
Similar to computing *refined Ritz vectors* (Jia, Stewart), but pretend largest eigenvalue stays 1 in smaller space, i.e. we do not compute any Ritz values.

Set initial guess q and k, the Arnoldi steps number

Repeat

.....$[Q, H] = \text{Arnoldi}(A, q, k)$

.....Compute $H - [I; 0] = U\Sigma V^T$

.....Set $v = V(:, k)$

.....Set $q = Qv$

Until $\sigma_{\text{min}}(H - [I; 0]) < \varepsilon$
Advantages

- Orthogonalization achieves effective separation of eigenvectors.
- Take advantage of knowing the largest eigenvalue.
- Largest Ritz value could be complex, but if we set the shift to 1 then no risk of complex arithmetic.
- Smallest singular value converges smoothly to zero (more smoothly than largest Ritz value converges to 1).
- Stopping criterion with no computational overhead:

\[\| Aq - q \|_2 = \sigma_{\min}(H - [I; 0]). \]
Disadvantages

- More complicated to implement.
- A single iteration is more expensive than a power iteration; must converge within fewer iterations.
Sensitivity of the PageRank Vector

\[M(c) = cP + (1 - c)ev^T; \quad e = [1, \ldots, 1]^T, \quad v = \frac{e}{n}. \]

\[M(c)x(c) = x(c); \]

\[M'x + Mx' = x'; \]

\[M' = P - ev^T = \frac{1}{c}(M - ev^T); \]

\[(I - M)x' = M'x = \frac{1}{c}(x - v). \]

Get the exact same matrix, \(I - M \): singular consistent linear system. Goal: identify ‘sensitive’ vs. ‘insensitive’ components. Difficulty: How do we compute it?
<table>
<thead>
<tr>
<th>name</th>
<th>size</th>
<th>nz</th>
<th>avg nz per row</th>
</tr>
</thead>
<tbody>
<tr>
<td>sg</td>
<td>3,685</td>
<td>32,445</td>
<td>8.8</td>
</tr>
<tr>
<td>bs</td>
<td>19,566</td>
<td>133,535</td>
<td>6.8</td>
</tr>
<tr>
<td>Stanford</td>
<td>281,903</td>
<td>2,312,497</td>
<td>8.2</td>
</tr>
<tr>
<td>Stanford-Berkeley</td>
<td>683,446</td>
<td>7,583,376</td>
<td>11.1</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>1,104,857</td>
<td>18,265,794</td>
<td>16.5</td>
</tr>
<tr>
<td>edu</td>
<td>2,024,716</td>
<td>14,056,641</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Thanks for David Gleich and Yahoo! Inc.
Effect of the damping factor c

Typical behavior for the test matrices: difference in convergence rate is significant.
Matrix-vector products for various values of the damping factor c, for the 281903×281903 Stanford matrix. The stopping criterion was $\|x^{(k)} - Ax^{(k)}\|_1 < 10^{-7}$.
Ordering is a function of c (a few rankings in Wikipedia)

<table>
<thead>
<tr>
<th>Entry</th>
<th>$c = 0.85$</th>
<th>$c = 0.90$</th>
<th>$c = 0.95$</th>
<th>$c = 0.99$</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Race (U.S. Census)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>France</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>2005</td>
<td>5</td>
<td>5</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>2004</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>2000</td>
<td>7</td>
<td>15</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>Canada</td>
<td>8</td>
<td>10</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Category: culture</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Category: politics</td>
<td>13</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Category: wikiportals</td>
<td>18</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Italy</td>
<td>28</td>
<td>27</td>
<td>31</td>
<td>40</td>
</tr>
<tr>
<td>Sweden</td>
<td>80</td>
<td>92</td>
<td>94</td>
<td>100</td>
</tr>
</tbody>
</table>
Observations

- Top ranked entry stays on top throughout.
- Countries generally lose ground as c goes up; categories make gains.
- Second ranked entry for $c = 0.85$ [Race (U.S. census)] is ranked 20th for $c = 0.99$.
- On the other hand 18th ranked entry for $c = 0.85$ is ranked third for $c = 0.99$. [Wikiportals are pages functioning as a portal for a particular subject area.]
- Other entries also show change in ranking as a function of the damping factor.
Changes at the top as a function of c

<table>
<thead>
<tr>
<th>c</th>
<th>top 5</th>
<th>top 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>0.90</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>0.95</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>0.99</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Match of webpages in the top rankings. The top 5 (first column) and top 10 (second column) pages for $c = 0.85$ were taken, and in the table the numbers indicate how many of them appear in the top 5 and 10 for other values of c.
Summary

- Decomposition-free methods are necessary.
- Techniques for convergence acceleration prove effective.
- For $c = 0.85$ power method seems good enough, but not for higher values of c.
- Arnoldi approach seems a natural way to go and proves effective.

Challenges

- How to determine the reliability of PageRank by means of sensitivity.
- Efficient methods for a large value of c.