Numerical Methods for Rapid Computation of PageRank

Gene H. Golub

Stanford University Stanford, CA USA

Joint work with Chen Greif

Outline

Markov Chains and PageRank Definition

- Definition
- 2 Acceleration Techniques
 - Sequence extrapolation
 - Adaptive Computation
 - Other Techniques

3 Arnoldi Based Methods

- A refined Arnoldi algorithm
- Sensitivity
- Numerical experiments

Outline

Markov Chains and PageRank Definition

- 2 Acceleration Techniques
 - Sequence extrapolation
 - Adaptive Computation
 - Other Techniques
- 3 Arnoldi Based Methods
 - A refined Arnoldi algorithm
 - Sensitivity
 - Numerical experiments

Stationary Distribution Vector of a Transition Probability Matrix

We are seeking a row vector π^T that satisfies $\pi^T = \pi^T P$ where P is a square *stochastic* matrix, with nonnegative entries between 0 and 1, and Pe = e, where e is a vector of all-ones.

Theorem

Perron(1907)-Frobenius(1912): A nonnegative irreducible matrix has a simple real eigenvalue equal to its spectral radius, whose associated eigenvector is a vector all of whose entries are nonnegative.

What happens when P is stochastic and possibly reducible?

What Is PageRank?

Definition

Given a Webpage database, the PageRank of the *i*th Webpage is the *i*th element π_i of the stationary distribution vector π that satisfies $\pi^T P = \pi^T$, where P is a matrix of *weights* of webpages that indicate their importance.

What Is PageRank?

Definition

Given a Webpage database, the PageRank of the *i*th Webpage is the *i*th element π_i of the stationary distribution vector π that satisfies $\pi^T P = \pi^T$, where P is a matrix of *weights* of webpages that indicate their importance.

Difficulties

- *P* is too large (size possibly in the billions) for forming any of our favorite decompositions.
- P could be reducible, contain zero rows, and other difficulties of this sort.

What Is PageRank?

Definition

Given a Webpage database, the PageRank of the *i*th Webpage is the *i*th element π_i of the stationary distribution vector π that satisfies $\pi^T P = \pi^T$, where P is a matrix of *weights* of webpages that indicate their importance.

Difficulties

- *P* is too large (size possibly in the billions) for forming any of our favorite decompositions.
- P could be reducible, contain zero rows, and other difficulties of this sort.

How do we modify P so that there is a unique solution?

Links determine the importance of a webpage

The fundamental idea of Brin & Page: Importance of a webpage is determined not by its contents but rather by which pages link to it. Apply the power method to a web link graph.

Some issues with web link graphs

Difficulties

- The existence of dangling nodes (correspond to an all-zero row in the matrix): could have very important pages that have no outlinks. (e.g. the U.S. constitution!)
- Periodicity: a cyclic path in the Webgraph. (e.g. You point only to your mom's webpage and she points only to yours.)

Simple example:

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Some issues with web link graphs

Difficulties

- The existence of dangling nodes (correspond to an all-zero row in the matrix): could have very important pages that have no outlinks. (e.g. the U.S. constitution!)
- Periodicity: a cyclic path in the Webgraph. (e.g. You point only to your mom's webpage and she points only to yours.)

Simple example:

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Solution

Set M(c) = cP + (1 - c)E, where E is a positive rank-1 matrix.

The matrix M(c)

- We have M(c) > 0 which yields a unique solution. But what is the significance of the stationary probability vector?
- M(c) is a Markov chain with positive entries, and

$$M(c)z(c)=z(c).$$

Therefore for c < 1, z(c) is unique (under proper scaling).

11

Simple example (Glynn and G.)

For the identity matrix, P = I, no unique stationary probability distribution, but for $M(c) = cI + (1 - c)ee^{T}/n$ we are converging to

$$z(c)=\frac{1}{n}e.$$

The significance of the parameter c

- c is the probability that a surfer will follow an outlink (as opposed to jump randomly to another Webpage).
- c = 0.85 was the choice in the Brin & Page model.
- Like regularization: small value leads to a more stable computation, but further away from true solution.

Brin & Page's Strategy: Apply Power Method

For Google, it all boiled down originally to solving the eigenvalue problem

$$x = Mx$$

using the power method

$$x^{(k+1)} = M x^{(k)}.$$

Discussion

Let $Mz_i = \lambda_i z_i$. For $|\lambda_i| \neq |\lambda_j|$ we have

$$x^{(0)} = \sum \alpha_i z_i,$$

and

$$x^{(k)} = \sum \alpha_i \lambda_i^k z_i,$$

with $||x^{(k)}||_1 = 1$ and $x \ge 0$. After normalization, for $\lambda_1 = 1$ we have

$$x^{(k)} = z_1 + \sum_{j=2}^n \beta_j \lambda_j^k z_j.$$

The Eigenvalues of the PageRank Matrix

Theorem

(Elegant proof due to Eldén) Let P be a column-stochastic matrix with eigenvalues $\{1, \lambda_2, \lambda_3, \dots, \lambda_n\}$. Then the eigenvalues of $M(c) = cP + (1 - c)ve^T$, where 0 < c < 1 and v is a nonnegative vector with $e^Tv = 1$, are

$$\{1, c\lambda_2, c\lambda_3, \ldots, c\lambda_n\}.$$

This implies

$$\frac{|\lambda_j|}{|\lambda_1|} \le c.$$

16

Outline

Markov Chains and PageRank Definition

2 Acceleration Techniques

- Sequence extrapolation
- Adaptive Computation
- Other Techniques

3 Arnoldi Based Methods

• A refined Arnoldi algorithm

17

- Sensitivity
- Numerical experiments

Quadratic Extrapolation (Kamvar, Haveliwala, Manning, G.)

Slowly convergent series can be replaced by series that converge to the same limit at a much faster rate.

Idea: Estimate components of current iterate in the directions of second and third eigenvectors, and eliminate them.

Quadratic Extrapolation

Suppose M has three distinct eigenvalues. The minimal polynomial is given by

$$P_M(\lambda) = \gamma_0 + \gamma_1 \lambda + \gamma_2 \lambda^2 + \gamma_3 \lambda^3.$$

By the Cayley-Hamilton theorem, $P_M(M) = 0$. Hence for any vector z,

$$P_M(M)z = (\gamma_0 + \gamma_1 M + \gamma_2 M^2 + \gamma_3 M^3)z = 0.$$

Quadratic Extrapolation (cont.)

Set $z = x^{(k-3)}$ and use the fact that $x^{(k-2)} = Mx^{(k-3)}$ and so on. Thus,

$$(x^{(k-2)}-x^{(k-3)})\gamma_1+(x^{(k-1)}-x^{(k-3)})\gamma_2+(x^{(k)}-x^{(k-3)})\gamma_3=0.$$

Defining

$$y^{(k-j)} = x^{(k-j)} - x^{(k-3)}, \ j = 1, 2, 3,$$

and setting $\gamma_3 = 1$ (to avoid getting a trivial solution $\gamma = 0$), get

$$(y^{(k-2)} y^{(k-1)})[\gamma_1 \gamma_2]^T = -y^{(k)}$$

Now, since M has more than three eigenvalues, solve a least squares problem.

The dynamic nature of the web

This problem involves a matrix which is changing over time.

- States increase and decrease, i.e. new websites are introduced and old websites die.
- Websites are continually changing. *M* is a function of time and so is its dimension.

Adaptive Computation (joint with Kamvar and Haveliwala)

Most pages converge rapidly. Basic idea: when the PageRank of a page has converged, stop recomputing it.

$$x_N^{(k+1)} = M_N x^{(k)};$$

 $x_C^{(k+1)} = x_C^{(k)}.$

- Use the previous vector as a start vector.
- Nice speedup, but not great. Why? The old pages converge quickly, but the new pages still take long to converge.
 Web constantly changes! Addition, deletion, change of existing pages...
- But, if you use Adaptive PageRank, you save the computation of the old pages.

Example: Stanford-Berkeley, $n \approx 700000$

Other Effective Approaches

- Aggregation/Disaggregation. (Stewart, Langville & Meyer,)
- Approaches related to permutations of the Google matrix. (Del Corso et. al., Kamvar et. al.)
- Linear system formulation. (Arasu et. al.)

and more ...

Survey paper:

A survey of eigenvector methods of Web information retrieval by Amy Langville and Carl Meyer. Stability and convergence analysis: Ipsen & Kirkland.

Outline

Markov Chains and PageRank Definition

- 2 Acceleration Techniques• Sequence extrapolation
 - Adaptive Computation
 - Adaptive Computation
 - Other Techniques
- 3 Arnoldi Based Methods
 - A refined Arnoldi algorithm
 - Sensitivity
 - Numerical experiments

Using the Arnoldi method for PageRank (joint with Chen Greif)

Arnoldi method:

The Arnoldi method is generally used for generating a small upper Hessenberg that approximates some of the eigenvalues of the original matrix. When Q is orthogonal,

$$Q^{\mathsf{T}} M Q(Q^{\mathsf{T}} x) = \lambda(Q^{\mathsf{T}} x).$$

- Find $H = Q^T M Q$ upper Hessenberg, then perform the computations for H instead of M.
- M is n-by-n and is huge, but we terminate the process after k steps. Resulting H is (k + 1)-by-k.

Computational Cost

- Main cost: One matrix-vector product (with original large matrix) per iteration.
- Inner products and norm computations.
- Power method cheaper but not by much if matrix-vector products dominate.

An Arnoldi/SVD algorithm for computing PageRank

Similar to computing *refined Ritz vectors* (Jia, Stewart), but pretend largest eigenvalue stays 1 in smaller space, i.e. we do not compute any Ritz values.

Set initial guess q and k, the Arnoldi steps number Repeat[Q, H] = Arnoldi(A, q, k).....Compute $H - [I; 0] = U\Sigma V^T$Set v = V(:, k).....Set q = QvUntil $\sigma_{\min}(H - [I; 0]) < \varepsilon$

Advantages

- Orthogonalization achieves effective separation of eigenvectors.
- Take advantage of knowing the largest eigenvalue.
- Largest Ritz value could be complex, but if we set the shift to 1 then no risk of complex arithmetic.
- Smallest singular value converges smoothly to zero (more smoothly than largest Ritz value converges to 1).
- Stopping criterion with no computational overhead:

$$||Aq - q||_2 = \sigma_{\min}(H - [I; 0]).$$

Disadvantages

- More complicated to implement.
- A single iteration is more expensive than a power iteration; must converge within fewer iterations.

Sensitivity of the PageRank Vector

$$M(c) = cP + (1 - c)ev^{T}; e = [1, ..., 1]^{T}, \quad v = \frac{e}{n}.$$

$$M(c)x(c) = x(c);$$

$$M'x + Mx' = x';$$

$$M' = P - ev^{T} = \frac{1}{c}(M - ev^{T});$$

$$(I - M)x' = M'x = \frac{1}{c}(x - v).$$

Get the exact same matrix, I - M: singular *consistent* linear system. Goal: identify 'sensitive' vs. 'insensitive' components. Difficulty: How do we compute it?

Web Matrices

name	size	nz	avg nz per row
sg	3,685	32,445	8.8
bs	19,566	133,535	6.8
Stanford	281,903	2,312,497	8.2
Stanford-Berkeley	683,446	7,583,376	11.1
Wikipedia	1,104,857	18,265,794	16.5
edu	2,024,716	14,056,641	6.9

Thanks for David Gleich and Yahoo! Inc.

Effect of the damping factor c

Typical behavior for the test matrices: difference in convergence rate is significant.

Numerical example

С	Power	<i>k</i> = 4	<i>k</i> = 8	k = 16
0.85	77	76	64	64
0.90	117	112	96	80
0.95	236	192	136	114
0.99	1165	700	504	352

Matrix-vector products for various values of the damping factor *c*, for the 281903 × 281903 Stanford matrix. The stopping criterion was $||x^{(k)} - Ax^{(k)}||_1 < 10^{-7}$.

Ordering is a function of c (a few rankings in Wikipedia)

Entry	<i>c</i> = 0.85	<i>c</i> = 0.90	<i>c</i> = 0.95	<i>c</i> = 0.99
United States	1	1	1	1
Race (U.S. Census)	2	2	4	20
United Kingdom	3	3	2	2
France	4	4	5	7
2005	5	5	11	10
2004	6	6	12	13
2000	7	15	20	29
Canada	8	10	17	17
Category: culture	12	9	8	6
Category: politics	13	7	6	5
Category: wikiportals	18	8	3	3
Italy	28	27	31	40
Sweden	80	92	94	100

Observations

- Top ranked entry stays on top throughout.
- Countries generally lose ground as *c* goes up; categories make gains.
- Second ranked entry for c = 0.85 [Race (U.S. census)] is ranked 20th for c = 0.99.
- On the other hand 18th ranked entry for c = 0.85 is ranked third for c = 0.99. [Wikiportals are pages functioning as a portal for a particular subject area.]
- Other entries also show change in ranking as a function of the damping factor.

Changes at the top as a function of c

С	top 5	top 10
0.85	5	10
0.90	5	7
0.95	3	4
0.99	2	3

Match of webpages in the top rankings. The top 5 (first column) and top 10 (second column) pages for c = 0.85 were taken, and in the table the numbers indicate how many of them appear in the top 5 and 10 for other values of c.

Summary

Summary

- Decomposition-free methods are necessary.
- Techniques for convergence acceleration prove effective.
- For *c* = 0.85 power method seems good enough, but not for higher values of *c*.
- Arnoldi approach seems a natural way to go and proves effective.

Challenges

- How to determine the reliability of PageRank by means of sensitivity.
- Efficient methods for a large value of c.