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Stationary Distribution Vector of a Transition Probability
Matrix

We are seeking a row vector πT that satisfies πT = πTP where P
is a square stochastic matrix, with nonnegative entries between 0
and 1, and Pe = e, where e is a vector of all-ones.

Theorem

Perron(1907)-Frobenius(1912): A nonnegative irreducible matrix
has a simple real eigenvalue equal to its spectral radius, whose
associated eigenvector is a vector all of whose entries are
nonnegative.

What happens when P is stochastic and possibly reducible?
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What Is PageRank?

Definition

Given a Webpage database, the PageRank of the ith Webpage is
the ith element πi of the stationary distribution vector π that
satisfies πTP = πT , where P is a matrix of weights of webpages
that indicate their importance.

Difficulties

1 P is too large (size possibly in the billions) for forming any of
our favorite decompositions.

2 P could be reducible, contain zero rows, and other difficulties
of this sort.

How do we modify P so that there is a unique solution?
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Links determine the importance of a webpage

The fundamental idea of Brin & Page: Importance of a webpage is
determined not by its contents but rather by which pages link to it.
Apply the power method to a web link graph.

8



Some issues with web link graphs

Difficulties

1 The existence of dangling nodes (correspond to an all-zero
row in the matrix): could have very important pages that have
no outlinks. (e.g. the U.S. constitution!)

2 Periodicity: a cyclic path in the Webgraph. (e.g. You point
only to your mom’s webpage and she points only to yours.)

Simple example:

P =

(
0 1
1 0

)
.

Solution

Set M(c) = cP + (1− c)E, where E is a positive rank-1 matrix.
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The matrix M(c)

We have M(c) > 0 which yields a unique solution. But what
is the significance of the stationary probability vector?

M(c) is a Markov chain with positive entries, and

M(c)z(c) = z(c).

Therefore for c < 1, z(c) is unique (under proper scaling).

11



Simple example (Glynn and G.)

For the identity matrix, P = I , no unique stationary probability
distribution, but for M(c) = cI + (1− c)eeT/n we are converging
to

z(c) =
1

n
e.
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The significance of the parameter c

c is the probability that a surfer will follow an outlink (as
opposed to jump randomly to another Webpage).

c = 0.85 was the choice in the Brin & Page model.

Like regularization: small value leads to a more stable
computation, but further away from true solution.
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Brin & Page’s Strategy: Apply Power Method

For Google, it all boiled down originally to solving the eigenvalue
problem

x = Mx

using the power method

x (k+1) = Mx (k).
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Discussion

Let Mzi = λizi . For |λi | 6= |λj | we have

x (0) =
∑

αizi ,

and
x (k) =

∑
αiλ

k
i zi ,

with ‖x (k)‖1 = 1 and x ≥ 0.
After normalization, for λ1 = 1 we have

x (k) = z1 +
n∑

j=2

βjλ
k
j zj .
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The Eigenvalues of the PageRank Matrix

Theorem

(Elegant proof due to Eldén)
Let P be a column-stochastic matrix with eigenvalues
{1, λ2, λ3, . . . , λn}. Then the eigenvalues of
M(c) = cP + (1− c)veT , where 0 < c < 1 and v is a nonnegative
vector with eT v = 1, are

{1, cλ2, cλ3, . . . , cλn}.

This implies
|λj |
|λ1|

≤ c .
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Quadratic Extrapolation
(Kamvar, Haveliwala, Manning, G.)

Slowly convergent series can be replaced by series that converge to
the same limit at a much faster rate.
Idea: Estimate components of current iterate in the directions of
second and third eigenvectors, and eliminate them.
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Quadratic Extrapolation

Suppose M has three distinct eigenvalues.
The minimal polynomial is given by

PM(λ) = γ0 + γ1λ + γ2λ
2 + γ3λ

3.

By the Cayley-Hamilton theorem, PM(M) = 0. Hence for any
vector z ,

PM(M)z = (γ0 + γ1M + γ2M
2 + γ3M

3)z = 0.
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Quadratic Extrapolation (cont.)

Set z = x (k−3) and use the fact that x (k−2) = Mx (k−3) and so on.
Thus,

(x (k−2) − x (k−3))γ1 + (x (k−1) − x (k−3))γ2 + (x (k) − x (k−3))γ3 = 0.

Defining
y (k−j) = x (k−j) − x (k−3), j = 1, 2, 3,

and setting γ3 = 1 (to avoid getting a trivial solution γ = 0), get

(y (k−2) y (k−1))[γ1 γ2]
T = −y (k).

Now, since M has more than three eigenvalues, solve a least
squares problem.

20



The dynamic nature of the web

This problem involves a matrix which is changing over time.

States increase and decrease, i.e. new websites are introduced
and old websites die.

Websites are continually changing. M is a function of time
and so is its dimension.
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Adaptive Computation
(joint with Kamvar and Haveliwala)

Most pages converge rapidly. Basic idea: when the PageRank of a
page has converged, stop recomputing it.

x
(k+1)
N = MNx (k) ;

x
(k+1)
C = x

(k)
C .

Use the previous vector as a start vector.

Nice speedup, but not great. Why? The old pages converge
quickly, but the new pages still take long to converge.
Web constantly changes! Addition, deletion, change of
existing pages...

But, if you use Adaptive PageRank, you save the computation
of the old pages.
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Example: Stanford-Berkeley, n ≈ 700000
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Other Effective Approaches

Aggregation/Disaggregation. (Stewart, Langville & Meyer,
.....)

Approaches related to permutations of the Google matrix.
(Del Corso et. al., Kamvar et. al.)

Linear system formulation. (Arasu et. al.)

and more...
Survey paper:
A survey of eigenvector methods of Web information retrieval
by Amy Langville and Carl Meyer.
Stability and convergence analysis: Ipsen & Kirkland.
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Using the Arnoldi method for PageRank
(joint with Chen Greif)

Arnoldi method:
The Arnoldi method is generally used for generating a small upper
Hessenberg that approximates some of the eigenvalues of the
original matrix. When Q is orthogonal,

QTMQ(QT x) = λ(QT x).

1 Find H = QTMQ upper Hessenberg, then perform the
computations for H instead of M.

2 M is n-by-n and is huge, but we terminate the process after k
steps. Resulting H is (k + 1)-by-k.

26



Computational Cost

1 Main cost: One matrix-vector product (with original large
matrix) per iteration.

2 Inner products and norm computations.

3 Power method cheaper but not by much if matrix-vector
products dominate.
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An Arnoldi/SVD algorithm for computing PageRank

Similar to computing refined Ritz vectors (Jia, Stewart), but
pretend largest eigenvalue stays 1 in smaller space, i.e. we do not
compute any Ritz values.

Set initial guess q and k, the Arnoldi steps number
Repeat
.....[Q,H] = Arnoldi(A, q, k)
.....Compute H − [I ; 0] = UΣV T

.....Set v = V (:, k)

.....Set q = Qv
Until σmin(H − [I ; 0]) < ε
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Advantages

Orthogonalization achieves effective separation of
eigenvectors.

Take advantage of knowing the largest eigenvalue.

Largest Ritz value could be complex, but if we set the shift to
1 then no risk of complex arithmetic.

Smallest singular value converges smoothly to zero (more
smoothly than largest Ritz value converges to 1).

Stopping criterion with no computational overhead:

‖Aq − q‖2 = σmin(H − [I ; 0]).
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Disadvantages

More complicated to implement.

A single iteration is more expensive than a power iteration;
must converge within fewer iterations.

30



Sensitivity of the PageRank Vector

M(c) = cP + (1− c)evT ; e = [1, . . . , 1]T , v =
e

n
.

M(c)x(c) = x(c);

M ′x + Mx ′ = x ′;

M ′ = P − evT =
1

c
(M − evT );

(I −M)x ′ = M ′x =
1

c
(x − v).

Get the exact same matrix, I −M: singular consistent linear
system. Goal: identify ‘sensitive’ vs. ‘insensitive’ components.
Difficulty: How do we compute it?
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Web Matrices

name size nz avg nz per row

sg 3,685 32,445 8.8

bs 19,566 133,535 6.8

Stanford 281,903 2,312,497 8.2

Stanford-Berkeley 683,446 7,583,376 11.1

Wikipedia 1,104,857 18,265,794 16.5

edu 2,024,716 14,056,641 6.9

Thanks for David Gleich and Yahoo! Inc.
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Effect of the damping factor c

Typical behavior for the test matrices: difference in convergence
rate is significant.
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Numerical example

c Power k = 4 k = 8 k = 16

0.85 77 76 64 64

0.90 117 112 96 80

0.95 236 192 136 114

0.99 1165 700 504 352

Matrix-vector products for various values of the damping factor c ,
for the 281903× 281903 Stanford matrix. The stopping criterion
was ‖x (k) − Ax (k)‖1 < 10−7.
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Ordering is a function of c (a few rankings in Wikipedia)

Entry c = 0.85 c = 0.90 c = 0.95 c = 0.99

United States 1 1 1 1

Race (U.S. Census) 2 2 4 20

United Kingdom 3 3 2 2

France 4 4 5 7

2005 5 5 11 10

2004 6 6 12 13

2000 7 15 20 29

Canada 8 10 17 17

Category: culture 12 9 8 6

Category: politics 13 7 6 5

Category: wikiportals 18 8 3 3

Italy 28 27 31 40

Sweden 80 92 94 100

35



Observations

Top ranked entry stays on top throughout.

Countries generally lose ground as c goes up; categories make
gains.

Second ranked entry for c = 0.85 [Race (U.S. census)] is
ranked 20th for c = 0.99.

On the other hand 18th ranked entry for c = 0.85 is ranked
third for c = 0.99. [Wikiportals are pages functioning as a
portal for a particular subject area.]

Other entries also show change in ranking as a function of the
damping factor.
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Changes at the top as a function of c

c top 5 top 10

0.85 5 10

0.90 5 7

0.95 3 4

0.99 2 3

Match of webpages in the top rankings. The top 5 (first column)
and top 10 (second column) pages for c = 0.85 were taken, and in
the table the numbers indicate how many of them appear in the
top 5 and 10 for other values of c .
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Summary

Summary

Decomposition-free methods are necessary.

Techniques for convergence acceleration prove effective.

For c = 0.85 power method seems good enough, but not for
higher values of c .

Arnoldi approach seems a natural way to go and proves
effective.

Challenges

How to determine the reliability of PageRank by means of
sensitivity.

Efficient methods for a large value of c .
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