Next: About this document ...
Up: paper94
Previous: Numerical Verification
 1

N. Arada, J.P. Raymond, and F. Tröltzsch.
On an augmented Lagrangian SQP method for a class of optimal
control problems in Banach spaces.
Submitted to Computational Optimization and Applications, to
appear.
 2

R. Byrd, M.E. Hribar, and J. Nocedal.
An interior point method for large scale nonlinear programming.
SIAM J. Optimization, 9:877900, 1999.
 3

E. Casas.
Pontryagin's principle for stateconstrained boundary control
problems of semilinear parabolic equations.
SIAM J. Control and Optimization, 35:1
 4

E. Casas and F. Tröltzsch.
Secondorder necessary and sufficient optimality conditions for
optimization problems and applications to control theory.
To appear.
 5

E. Casas, F. Tröltzsch, and A. Unger.
Second order sufficient optimality conditions for some
stateconstrained control problems of semilinear elliptic equations.
SIAM J. Control and Optimization, 38(5):13691391, 2000.
 6

R. Fourer, D.M. Gay, and B.W. Kernighan.
AMPL: A modeling language for mathematical programming.
Duxbury Press, Brooks/Cole Publishing Company, Pacific Grove, CA, 1993.
 7

H.D. Mittelmann.
Verification of secondorder sufficient optimality conditions for
semilinear elliptic and parabolic control problems.
Comput. Optim. and Applications, to appear.
 8

H.D. Mittelmann.
Sufficient optimality for discretized parabolic and elliptic
control problems.
J. Comput. Appl. Math., to appear.
 9

H.D. Mittelmann.
Benchmarks for Optimization Software. On the World Wide Web at
http://plato.la.asu.edu/bench.html.
 10

J.P. Raymond and F. Tröltzsch.
Second order sufficient optimality conditions for nonlinear parabolic
control problems with state constraints.
Discrete and Continuous Dynamical Systems, 6:431450, 2000.
 11

J.P. Raymond and H. Zidani.
Hamiltonian Pontryagin's principles for control problems governed
by semilinear parabolic equations.
Applied Mathematics and Optimization, 39:143177, 1999.
 12

Th.H. Robey and D.L. Sulsky.
Row ordering for Sparse QR Decomposition.
SIAM J. Matrix Analysis and Applications, 15:12081225, 1994.
 13

P. Spellucci.
Numerische Verfahren der nichtlinearen Optimierung.
BirkhäuserVerlag, Basel, 1993.
 14

R.J. Vanderbei and D.F. Shanno.
An interiorpoint algorithm for nonconvex nonlinear programming.
Comput. Optim. and Applications, 13:231252, 2000.
Hans D. Mittelmann
20030125