Next: About this document ...
Up: Sufficient Optimality for Discretized
Previous: Conclusion

 1

N. Arada, J.P. Raymond, and F. Troltzsch,
On an augmented Lagrangian SQP method for a class of optimal control
problems in Banach spaces, to appear.
 2

J.F. Bonnans,
Secondorder analysis for control constrained optimal control problems of
semilinear elliptic systems,
Appl. Math. Optim., 38, (1998), 303325.
 3

Ch. Buskens and H. Maurer,
SQPmethods for solving optimal control problems with control and state
constraints; adjoint variables, sensitivity analysis, and realtime
control,
J. Comp. Appl. Math. 120, (2000), 85108.
 4

E. Casas, F. Troltzsch, and A. Unger,
Second order sufficient optimality conditions for a nonlinear elliptic
control problem,
J. Anal. Appl., 15, (1996), 687707.
 5

E. Casas, F. Troltzsch, and A. Unger,
Second order sufficient optimality conditions for some stateconstrained
control problems of semilinear elliptic equations,
to appear in SIAM J. Control Optim.
 6

A.L. Dontchev, W.W. Hager, A.B. Poore, and B. Yang,
Optimality, stability, and convergence in optimal control, Appl. Math.
Optim., 31, (1995), 297326.
 7

R. Fourer, D.M. Gay, and B.W. Kernighan,
AMPL: A modeling language for mathematical programming,
Duxbury Press, Brooks/Cole Publishing Company, Pacific Grove, CA, 1993.
 8

H. Goldberg and F. Troltzsch,
Second order sufficient optimality conditions for a class of nonlinear
parabolic boundary control problems,
SIAM J. Control Optim., 31, (1993), 10071025.
 9

H. Goldberg and F. Troltzsch,
On a LagrangeNewton method for a nonlinear parabolic boundary
control problem,
Optim. Meth. Software, 8, (1998), 225247.
 10

M. Heinkenschloss,
SQP interiorpoint methods for distributed optimal control problems,
to appear in Encyclopedia of Optimization, P. Pardalos and C. Floudas
(eds.), Kluwer Academic Publishers.
 11

A.D. Ioffe,
Necessary and sufficient conditions for a local minimum, part 3: Second order
conditions and augmented duality,
SIAM J. Control Optim., 17, (1979), 266288.
 12

K. Ito and K. Kunisch,
Augmented LagrangianSQP methods for nonlinear optimal control problems
of tracking type,
SIAM J. Control Optim., 34, (1996), 874891.
 13

K. Ito and K. Kunisch,
The Newton algorithm for a class of weakly singular optimal control
problems,
to appear in SIAM J. Optim.
 14

K. Malanowski,
Sufficient optimality conditions for optimal control problems subject to
state constraints,
SIAM J. Control Optim., 35, (1997), 205227.
1994.
 15

H. Maurer,
First and second order sufficient optimality conditions in mathematical programming
and optimal control,
Math. Programming Study, 14, (1981), 163177.
 16

H. Maurer and H.D. Mittelmann,
Optimization techniques for solving elliptic control problems with control
and state constraints. Part I: Boundary control,
Comp. Optim. Appl., 16, (2000), 2955.
 17

H. Maurer and H.D. Mittelmann,
Optimization techniques for solving elliptic control problems with control
and state constraints. Part II: Distributed control,
to appear in Comp. Optim. Appl.
 18

H.D. Mittelmann and H. Maurer,
Solving elliptic control problems with interior and SQP methods: control
and state constraints,
J. Comp. Appl. Math. 120, (2000), 175195.
 19

H.D. Mittelmann,
Verification of SecondOrder Sufficient Optimality Conditions
for Semilinear Elliptic and Parabolic Control Problems,
to appear in Comp. Optim. Appl.
 20

H. Maurer and S. Pickenhain,
Secondorder sufficient conditions for control problems with mixed
controlstate constraints,
J. Optim. Theory Appl., 86, (1995), 649667.
 21

J.P. Raymond and F. Troltzsch,
Second order sufficient optimality conditions for nonlinear parabolic
control problems with state constraints, to appear.
 22

Th.H. Robey and D.L. Sulsky,
Row ordering for Sparse QR Decomposition,
SIAM J. Matrix Anal. Applic., 15, (1994), 12081225.
 23

K. Schittkowski,
Numerical solution of a timeoptimal parabolic boundaryvalue control
problem,
J. Optim. Theory Appl., 27, (1979), 271290.
 24

V.H. Schulz (ed.),
SQPbased direct discretization methods for practical optimal control
problems, J. Comp. Appl. Math. 120, (2000) (special issue).
 25

A.R. Shenoy, M. Heinkenschloss, and E.M. Cliff,
Airfoil design by an allatonce method,
Intern. J. Comp. Fluid Dynam., 11, (1998), 325.
 26

P. Spellucci,
Numerische Verfahren der nichtlinearen Optimierung,
BirkhäuserVerlag, Basel, 1993.
 27

R.J. Vanderbei and D.F. Shanno,
An interiorpoint algorithm for nonconvex nonlinear programming,
Comp. Optim. Appl., 13, (2000), 231252.
 28

S. Volkwein,
Distributed control problems for the Burgers equation,
to appear in Comp. Optim. Applic.
 29

S. Volkwein,
Application of augmented LagrangianSQP methods to optimal control
problems for the stationary Burgers equation,
to appear in Comp. Optim. Applic.
 30

S. Volkwein,
MeshIndependence for an Augmented LagrangianSQP Method in
Hilbert Spaces,
to appear in SIAM J. Control Optim.
 31

V. Zeidan,
The Riccati equation for optimal control problems with mixed statecontrol
constraints: Necessity and Sufficiency, SIAM J. Control Optim., 32, (1994), 12971321.
Hans Mittelmann
20000831