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the prevalence of this path to failure: in many of the instances when the Nelder-Mead method
bogs down, the simplex is indeed drastically deformed, with a small volume and very ill-conditioned
matrix of edges. In most of these situations, however, the function being minimized has highly
elongated contours and a very ill-conditioned Hessian, so that the simplex becomes misshapen by
responding to the local behavior of f.

In this context, it i1s interesting to recall that one of the original intentions of Nelder and Mead
was to improve efficiency by encouraging the simplex to modify its shape in accordance with the
contours of f. Hence precisely the same property of the Nelder-Mead method—its adaptation to
the behavior of f—may account for both its successes and failures. Note that a near-loss of linear
independence cannot happen to direct search methods whose vertices lie on a scaled lattice (such as
the pattern search methods analyzed by Torczon [26]), nor to methods that force the angles of the
simplex to stay uniformly bounded away from zero (such as the method of Tseng [27] when m = n).

Another potential cause of failure is suggested by Torczon [24], who presents numerical evidence
that the Nelder-Mead method fails when its ‘search direction’ (the vector & — ,41; see Section 3)
becomes nearly orthogonal to the negative gradient. This observation may be related to the con-
ventional wisdom that performance of the Nelder-Mead method suffers as the problem dimension
increases. For example, it is reported in [30] that, when minimizing 2?21 z? with n = 32 for one ini-
tial configuration, the condition number of the simplex edge matrix never exceeds 150, and all sides
of the simplex range between 0.5 and 0.9 in length; nonetheless, the best function value hovers at
approximately 0.25 for several thousand iterations. The simplex in this case, although well-behaved,
has in effect become misoriented with respect to the contours of f. For a more detailed analysis, see
[30].

It is not yet known whether these observed behavior patterns of the Nelder-Mead method can be
rigorously analyzed and fully explained. At the very least, understanding why the method fails may
allow us to design computational tests that warn when trouble begins. Ideally, our analysis would
also indicate what could be done to help the method recover. Tests thus far suggest that a suitable
adaptive restart strategy can lead to substantial improvements in efficiency [30].

8. Closing thoughts

Since their first appearance in the 1950s, direct search methods have experienced two almost-
disparate histories. They have remained astoundingly popular with practitioners for more than
30 years, and have retained this loyalty by repeatedly solving important practical problems that
other methods could not handle. In contrast, during this same period direct search methods were
being relegated from a mainstream position in the optimization community during the 1960s to
less-than-honored status by the end of the 1980s. As we have seen, there are very good reasons for
this disfavor—non-existent theory as well as erratic and unreliable performance.

The role of direct search methods is now undergoing yet another change. As discussed in Sec-
tion 5, mathematical underpinnings are being provided by the evolving body of convergence theory
for pattern search methods and other direct search methods. Even the Nelder-Mead method has a
growing theory of its own (see Section 6), and we seem at the time of this writing to be within a
reasonable distance of understanding its key mathematical properties, including the causes of failure.

From the viewpoint of practice, optimization researchers are increasingly interested in the kinds
of applications described at the beginning of this paper, where every function evaluation is precious
and costly. Direct search methods constitute one of the few viable alternatives for addressing such
problems, especially those in which ‘improvement’ is sought; hence direct search methods are needed
that combine theoretical soundness with both reliability and efficiency. It is still unclear which direct
search methods will ultimately emerge as the most effective. Exactly as in large-scale optimization,
the ‘best’ method is likely to be problem-dependent.

Direct search methods offer opportunities today not only for enlightening new theory, but also
for successful solution of important real-world problems. This author therefore believes that direct
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Some light has recently been shed on question (iv) by McKinnon [11], who gives a strictly convex
continuously differentiable function in two dimensions for which the Nelder-Mead simplices converge
to a non-minimizing point. In the McKinnon example, the best vertex of the initial simplex is a
non-minimizing point of discontinuity in the second derivatives. By construction, every Nelder-Mead
iteration is a contraction in which the best point stays fixed, so that all vertices converge to the
original best vertex. Thus McKinnon provides a counterexample to the hypothesis that the Nelder-
Mead simplices always converge to the minimizer of a continuously differentiable strictly convex
function in two dimensions.

A few positive results are also emerging. Lagarias et al. [9] have established convergence of the
Nelder-Mead method to a minimizer for strictly convex one-dimensional functions with bounded
level sets. They have also established a variety of convergence results for strictly convex functions
with bounded level sets in dimension two:

1. The function values at all vertices converge to the same value.

2. The simplices have volumes converging to zero, i.e., they collapse to a single point or straight
line segment.

3. The simplices in the Nelder-Mead algorithm with no expand step have diameter converging to
7€ero.

The mathematics used to obtain these results 1s quite different from the standard proof techniques
in nonlinear optimization. In [9], the Nelder-Mead algorithm is interpreted as a discrete dynamical
system in which the iterations are ‘driven’ by the function values, and where permitted sequences
of moves are restricted because of the descent requirement and the properties of strictly convex
functions.

The question of whether the Nelder-Mead simplices converge to a minimizer for a strictly convex
quadratic function remains open at this time. No counterexample like McKinnon’s is known for the
quadratic case, but neither is there a proof of convergence to a minimizer, even in dimension 2.

Much analysis needs to be done to complete our theoretical understanding of this popular al-
gorithm. A particularly important question involves the effects of dimensionality, since the Nelder-
Mead folklore consistently states that the method may fail in higher dimensions. Clues about the
theoretical difficulties are suggested by the conditions imposed in convergence theories for better-
understood direct search methods, which include some combination of ‘nice’ simplices, a scaled
lattice structure, or a sufficient descent condition. Tt would be useful to know whether (and, if so,
how) the absence of these properties in the Nelder-Mead method allows pathologies that lead to
failure.

7. The Nelder-Mead method: more about practice

The lack of theory about the Nelder-Mead method has obviously not impeded the thousands of prac-
titioners who have happily used it since 1965. The simplicity and (wrongly) perceived robustness
of the Nelder-Mead method, as well as the convenience of not having to provide derivatives, are its
great strong points. Furthermore, 1t is undeniable that the Nelder-Mead method can sometimes be
more efficient—even much more efficient—than alternative methods. For example, extensive numer-
ical experiments by Wright [30] show that the Nelder-Mead method can converge to an acceptably
accurate solution with substantially fewer function evaluations than multidirectional search or a
steepest descent method based on finite-difference gradients.

Unfortunately, the results in [30] also show that the Nelder-Mead method can be horrifically
inefficient and unreliable. Given this huge range in performance, it seems desirable to analyze why
the Nelder-Mead method’s behavior varies so drastically. Various theories have been offered, but no
explanation yet has been entirely convincing.

A longstanding piece of Nelder-Mead folklore is that the method fails when the simplex collapses
into a subspace, or becomes extremely elongated and distorted in shape. The results in [30] confirm
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with respect to a subset of 1ts m best vertices, where m = 1 corresponds to the multidirectional
search algorithm [24], and m = n corresponds to the Nelder-Mead method. (In addition, when
m = n the simplex angles are forced to stay uniformly bounded away from zero.) Assuming that f
is continuously differentiable; bounded below, and has bounded level sets, Tseng proves that either
the fortified-descent method terminates with a stationary point of f, or else at least one cluster
point of the best vertices is a stationary point. A potentially significant feature of Tseng’s methods
is that the number of evaluations of f per iteration decreases as m increases. Hence for large m
these methods may be more efficient than multidirectional search or other pattern search methods
(which necessarily require a multiple of n function evaluations at every iteration).

The methods proposed by Yu, Rykov, and Tseng have in common that they allow a generalized
operation of reflection, through varying subsets of the simplex vertices, and that convergence of the
methods can be proved under suitable assumptions. For all of these methods, however, published
numerical results are either very limited or non-existent.

A different theme in recent work on non-derivative methods is the development of methods with
improved performance on smooth functions. As already observed, the logic of the direct search
algorithms described thus far (except for Rykov’s) depends only on the ordering of the function
values, not on their numerical values. If one is prepared to assume some smoothness properties
about f, the idea naturally arises of using the already-calculated function values to build a model
of f, and then to compute the next trial point based on the model. Powell [16, 17], Buckley and Ma
[4], and Conn and Toint [5] have considered direct search methods based on model-building. Along
with theoretical analysis, these authors report good numerical performance when their methods are
applied to suitably smooth test problems.

6. The Nelder-Mead method: new theory

Given the substantial progress just described on alternative direct search methods, 1t is logical to
wonder why we should not simply abandon the Nelder-Mead method. Beyond sentiment, there are
two good reasons for not doing so: the need for a clear theoretical understanding of this nearly ubig-
uitous and deceptively simple method, and the potential for developing an improved Nelder-Mead-
like algorithm that retains the good features of the original method while avoiding its difficulties.
The theoretical questions will be discussed in this section; practical implications are considered in
Section 7.

From a theoretical perspective, an unsatisfactory gaping hole persists that should be filled before
the Nelder-Mead method is left behind. As noted previously, none of the convergence theory pub-
lished so far applies to the original Nelder-Mead method. Even in the most closely related work—of
Woods [29] and Tseng [27]—the analysis differs in crucial ways. Woods treats an algorithm with a
stronger descent condition; and in the version of Tseng’s method analogous to Nelder-Mead (with
m = n), fortified descent is imposed at each iteration along with a requirement that the angles of
the simplices stay bounded away from zero. It seems important to determine rigorously, if possi-
ble, whether the Nelder-Mead method does (or does not) converge on any class of function, in any
dimension.

Woods [29] has already shown that the Nelder-Mead simplices can converge to a non-minimizing
point for a nonconvex function in two dimensions. However, many other questions remain:

(i) Do the function values at all vertices necessarily converge to the same value?
(ii) Does the volume of the simplices converge to zero?
(iii) Do all vertices of the simplices converge to the same point?

(iv) Do all vertices converge to a stationary point of f?

It would be of interest to know whether there are classes of functions in any dimension for which
these questions can be answered ‘yes’.



Figure 3 depicts the reflected, expanded, and contracted simplices in the multidirectional search
1

algorithm, with xy = 2 and v = 5. Note that, in contrast to the Nelder-Mead simplices shown in
Figures 1 and 2, the new simplex always retains the same shape (angles) as the original simplex,
although it may grow or decrease in size. The contraction of the multidirectional search method is
analogous to the shrink in the Nelder-Mead method in that a new simplex is created by moving all
non-best vertices toward the best vertex.

The number of function evaluations required by a multidirectional search iteration is an integer
multiple of 2n. If one of the initial reflection, expansion, or contraction steps produces a strict
improvement over fi, the iteration terminates after 2n function evaluations. If not, the sequence of
reflection, expansion and/or contraction is repeated with a contracted simplex until an improved best
function value is found, where each cycle costs a further 2n function evaluations. Consequently, a
multidirectional search method can require substantially more function evaluations than the Nelder-
Mead method when the latter is performing well; recall that a typical (non-shrink) Nelder-Mead
iteration requires either one or two function evaluations. If, however, the multidirectional search
method is implemented appropriately on a parallel computer with a sufficiently large number of
processors, the n function evaluations needed for each reflection, expansion, or contraction step can
be performed in parallel. See [24, 7] for further discussion about implementation issues arising in
parallel computing.

A great advantage of the multidirectional search method is its strong convergence properties,
which have been refined and extended by Torczon [26] to include all ‘pattern search’ methods—
broadly speaking, direct search methods that generate only points on a scaled lattice. It is shown
in [26] that, when a pattern search method is applied to a continuously differentiable function with
bounded level sets,

lim inf ||V £ )| = 0,

k— o0
where l‘(lk) denotes the best vertex at iteration k. (A common framework for several methods and
complete details of other convergence results are also given in [26].)

The key ingredients in Torczon’s convergence proofs are uniform linear independence of the
simplex edges at every iteration, the previously mentioned scaled lattice structure of all generated
points, and the step control strategy. These features together ensure that pathological simplices and
steps cannot arise in pattern search methods. As noted before, a point of particular interest is that
such favorable convergence properties apply even though the methods require only simple descent in
the best function value. Torczon’s general theory applies to coordinate search, evolutionary design
[2], the Hooke-Jeeves method [8], and multidirectional search [24], but not to the Nelder-Mead
method.

Theoretical analysis of several flavors also exists for some of the more recently proposed direct
search methods. In particular, Yu [31] analyzes a version of the Spendley, Hext and Himsworth
method [22] with a sufficient descent (rather than simple descent) condition, where the descent
criterion involves the squared simplex diameter. When this method is applied to a continuously
differentiable function f with bounded level sets, it is shown in [31] that at least one cluster point
of the iterates is a stationary point of f.

The direct search methods of Rykov [19, 20, 21] are characterized by two properties: (i) the
subset of vertices to be reflected at each iteration varies adaptively, and 1s chosen based on one of six
criterion functions, most of which depend on numerical function values; and (ii) a sufficient descent
condition similar to that of Yu [31] must be satisfied at each iteration. Certain convergence results
have been proved for Rykov’s methods when applied to a convex function with Lipschitz-continuous
gradient and bounded level sets. The use in these methods of the numerical function values at the
vertices can be viewed as a major philosophical difference from Nelder-Mead and other direct search
methods, and suggests a point of similarity with the model-building methods to be mentioned at
the end of this section.

In 1995, Tseng [27] suggested a class of simplex-based direct search methods involving “fortified
descent’—again, a stronger condition than simple descent. Tseng allows reflection of each simplex
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Mead method, but these now involve the n edges of the simplex emanating from the best vertex, so
that the entire simplex is reflected, expanded, and contracted. A multidirectional search iteration
succeeds when it finds a point of strict improvement over the best vertex, in contrast to the much
weaker condition in a Nelder-Mead iteration of finding a strict improvement compared to the worst
point. Asin Nelder-Mead, however, the acceptance criterion in multidirectional search is only simple
(rather than sufficient) decrease.

Expansion and contraction coefficients, here denoted by x and 7, are needed in the multidirec-
tional search method, with standard values y = 2 and v = % (In effect, the reflection coefficient
from the Nelder-Mead method is implicitly taken as 1.)

Iteration k of the multidirectional search algorithm.

1. Order.
The best vertex is labeled as x1, so that f(x;) = arg min;{ f(xs) } .

2. Reflect.
Define the n reflected vertices, x/) = 2w —w;, for e = 2, ..., n+ 1. Evaluate fﬁl) = f(xg«l))
If min; { fﬁl) } < fi1, go to step 3; otherwise, go to step 4.

3. Expand.
Compute the expanded vertices, xg) =21+ x(w1 — ), for i =2, ..., n+ 1, and evaluate
fﬁ” = f(ng)) It mini{f(gl)} < mini{fﬁl) }, then accept the expanded simplex, i.e., a; is
replaced by x(el) for ¢« = 2, ..., n+ 1 ; otherwise, accept the reflected simplex, i.e., z; is

replaced by xri). In either case, terminate the iteration.

4. Contract.
Calculate the contracted vertices, xcl) =21 +y(x; —x1), for i =2, ..., n+1, and evaluate
C(Z) = f(x(cl)) Fori=2,..., n+1, replace z; by x(cl). Terminate the iteration if min; { fc(l) 1<

f1; otherwise, return to step 2.
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Figure 3: Multidirectional search reflection, expansion, and contraction. The original simplex is
indicated with a dashed line.



The first theoretical results concerning the Nelder-Mead method appeared in the 1985 Ph. D.
thesis of Woods [29]. Woods provides an interesting negative result by depicting a two-dimensional
nonconvex function for which every Nelder-Mead iteration is a shrink and all vertices converge to a
non-minimizing point.

Woods then considers strictly convex functions with bounded level sets, and defines a modified
Nelder-Mead method with a stricter descent requirement for accepting the reflected point in step 2
of the algorithm (see Section 3). Under these assumptions Woods proves that: (i) every convergent
subsequence of the simplices generated by the modified algorithm converges to a degenerate simplex
(a single point); (ii) the values of f at all limit points are equal; and (iii) the set of limit points is
connected. Although a breakthrough in the sense of producing some theory about the Nelder-Mead
method, these results leave many questions unanswered. The proofs do not apply to the original
Nelder-Mead method; convergence of the simplices to a single point is not guaranteed, but only
convergence of a subsequence; and no properties of the limit points were verified.

In addition to concerns about the lack of theory, mainstream optimization researchers were not
impressed by the Nelder-Mead method’s practical performance, which can be appallingly poor. Even
on well-behaved functions, the Nelder-Mead method can ‘bog down’ (i.e., take endless iterations while
making negligible progress); see, for example, [30]. When this happens, the method often satisfies
the criterion (3.2) for a small-enough simplex (or the analogous criterion involving close function
values) and terminates, despite being nowhere close to a minimizer. The proliferation of papers
proposing variations on Nelder-Mead—see [3], for example—strongly indicates that the original
method can be unsatisfactory in practice. Torczon [24] describes substantial numerical evidence
that the Nelder-Mead method is not robust.

A large amount of folklore, mostly undocumented and imprecise, has accumulated about the
Nelder-Mead method. For example, several authors state that the method is good only for small
problems, but there is no clear definition of ‘small’, nor any indication as to why the method might
deteriorate with dimensionality. Frequent warnings occur that the Nelder-Mead simplex may collapse
into a nearly degenerate figure, and that restarting with a fresh simplex may be helpful. However,
no guidelines are provided for making these decisions in an implemented algorithm.

Given the combination of no theory and sometimes dreadful practice, why do so many people use
the Nelder-Mead method? The answer is probably that, despite its bad features, the Nelder-Mead
method often successfully locates a greatly improved solution with many fewer function evaluations
than any of its competitors. Also, users may simply be unaware of the potential difficulties, which
are not widely documented. In Numerical Recipes [18], for example, the Nelder-Mead method is
described rather mildly as ‘not very efficient in terms of the number of function evaluations that it
requires’.

We shall return in Section 6 to current research on the Nelder-Mead method.

5. A renaissance for direct search methods

Papers proposing simplex-based direct search methods with improved convergence properties were
published in 1979 by Yu [31, 32] in China, and in 1980 by Rykov [19, 20] in the Soviet Union.
However, until the last few years these papers were not widely known in the English-language
optimization research community.

For that community, a renaissance of interest in direct search methods began in 1989 with
Torczon’s Ph. D. thesis [24]. Her thesis and subsequent papers, some co-authored with Dennis,
propose a new form of direct search method—the multidirectional search method [24, 7, 25]. A
primary motivation for the multidirectional search method was a desire for efficiency in a parallel
computing environment.

The multidirectional search method is simplex-based, and consequently draws on ideas in [22, 12].
Fach iteration is associated with a current simplex whose best vertex (with lowest function value)
is so labeled. Operations called reflection, expansion and contraction are defined as in the Nelder-
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2. A Nelder-Mead iteration requires one function evaluation when the iteration terminates in
step 2, two function evaluations when termination occurs in step 3 or step 4, and n 4+ 2
function evaluations if a shrink step occurs. The Nelder-Mead method is thus particularly
parsimonious in function evaluations per iteration compared to other direct search methods;
see Section b.

3. The next Nelder-Mead simplex is determined by the coordinates of the simplex vertices and
the order information (3.1) about f at the vertices—not the numerical function values.

4. In the expand step, the method in the original Nelder-Mead paper accepts z. if f(z.) < f1,
and accepts #, otherwise. Standard practice today (followed in the algorithm given above)
accepts the better of z, and . if both give a strict improvement over z;.

To specify a complete Nelder-Mead algorithm, we need to define the initial simplex and a set of
termination criteria. In the absence of information about the particular function being minimized, it
is customary to specify a starting point in R” that is taken as one of the initial simplex vertices. The
other n vertices are then generated in one of two ways: perturbing the starting point by a specified
step along the n coordinate directions, or creating a regular simplex with specified edge length and
orientation. For some problems, of course, it may be possible for the user to specify n + 1 suitable
starting vertices.

For any non-derivative method, the issue of termination is problematical as well as highly sensitive
to problem scaling. Since gradient information is unavailable; it is provably impossible to verify
closeness to optimality simply by sampling f at a finite number of points. Most implementations
of direct search methods terminate based on two criteria intended to reflect the progress of the
algorithm: either the function values at the vertices are close, or the simplex has become very small.
In practice, both criteria have been interpreted in various ways. For example, following Woods [29],

Torczon [24] suggests termination when the current vertices a1, ..., 41 satisfy
Jnax =i < ¢ max(L eal), (3.2)

where ¢ is a tolerance. Either form of termination—close function values or a small simplex—can
be misleading for badly scaled functions. For discussions of termination criteria, see [15, 29, 24, 18].

4. The state of the Nelder-Mead method

Since its publication in 1965, the Nelder-Mead algorithm has been used in an extraordinarily wide
variety of contexts, especially in chemistry, chemical engineering, and medicine. There are literally
thousands of published papers about applications of the Nelder-Mead method, as well as numerous
proposed variants intended to overcome its defects. The 1991 book [28] contains a fascinating
chronological bibliography showing a steady growth in citations involving the Nelder-Mead method.
Nelder-Mead codes appear in the best-selling book Numerical Recipes [18] and in the pervasive
Matlab™" optimization toolbox [10].

Despite its wide use, until quite recently the Nelder-Mead method and its ilk have been depre-
cated, scorned, or ignored by almost all of the mainstream optimization community. Direct search
methods are characterized in many textbooks as ‘ad hoc’ or ‘heuristic’, with little to recommend
them, and are sometimes not mentioned at all. This negative attitude arises in part as a reaction
to users who might choose a Nelder-Mead method simply for its ease of use, even when minimizing
a smooth and inexpensive function well suited to a more reliable gradient-based method. In addi-
tion, however, there are strong theoretical and practical reasons for taking a dubious view of the
Nelder-Mead method.

In retrospect, it is remarkable that for twenty years after publication of the Nelder-Mead method,
no analysis of its theoretical properties was published. Theory is not mentioned in any of the
publications about the Nelder-Mead method from the 1960s and 1970s surveyed while preparing the
present paper.



5. Perform a shrink step.

Define n new vertices from
vi =21+ o(x; — 1), 1=2,...,n+1,

and evaluate f at these points. The vertices of the simplex at the next iteration consist of x1,
V2, -« Un4l.
Figures 1 and 2 show the effects of reflection, expansion, contraction and shrinkage for a simplex

in two dimensions (a triangle), using the standard coefficients p = 1, y = 2, vy = 1 and ¢ = 1.

20 2
Observe that, except in a shrink, the one new vertex always lies on the (extended) line joining #
and xp41. Furthermore, it is visually evident that the simplex shape undergoes a noticeable change
during an expansion or contraction with the standard coefficients.
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Figure 1: Nelder-Mead simplices after a reflection and an expansion step. The original simplex is
shown with a dashed line.

Figure 2: Nelder-Mead simplices after an outside contraction, an inside contraction, and a shrink.
The original simplex is shown with a dashed line.

The Nelder-Mead method has several interesting properties:
1. A successful non-shrink iteration produces a new vertex whose function value is strictly less

than f,41. This simple decrease requirement is much weaker than the sufficient decrease
conditions usually imposed in optimization convergence theory; see, for example, [14].
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and labeling the current set of vertices as l‘(lk), R xglk_gl such that

<l << (3.1)
(k)

where fi(k) denotes f(xgk)) Because we seek to minimize f, we refer to 27~ as the best point, and to
xglk_gl as the worst point. Consistent tie-breaking rules such as those given in [9] are required for the
algorithm to be well-defined. After calculating one or more trial points and evaluating f at these
points, the kth iteration generates a set of n 4 1 vertices that define a different simplex for the next
iteration.

When the iteration index & is unimportant or clear from context, the superscript will be omitted.
There are four possible operations: reflection, expansion, contraction, and shrinkage, each associated
with a scalar parameter. The coefficients of reflection, expansion, contraction, and shrinkage are
denoted respectively by p, x, v, and ¢. According to the original Nelder-Mead paper [12], these
coefficients should satisfy p > 0, x > 1, 0 < v < 1, and 0 < ¢ < 1. The standard, nearly universal,
choices for these values are

_ _ _1 _1
p=1 x=2, y=35, and o=3.

A generic Nelder-Mead iteration has two possible outcomes: (1) a single new vertex—the accepted
point—which replaces #,41 (the worst point) in the set of vertices for the next iteration; or (2) if
a shrink is performed, a set of n new points that, together with z;, form the simplex at the next
iteration. A kind of ‘search direction’ is defined by x,41 and z, the centroid of all vertices except

Tn4+1.

Iteration k of the Nelder-Mead algorithm.
1. Order.

Order the n + 1 vertices to satisfy f(z1) < f(w2) < -+ < f(xn41), using a consistent tie-
breaking rule; see, for example, [9].

2. Reflect.
Compute the reflection point z, from
Tp =T+ p(i‘ - xn+1)a
where Z is the centroid of the n best vertices (all except xp41), 1.e., 2 =Y ., @;/n. Evaluate
fr=f(zp). If f1 < fr < fn, accept the reflected point #, and terminate the iteration.
3. Expand.

If f, < f1, calculate the ezpansion point . from

Le :£+X(xr —i‘),

and evaluate f, = f(x.). If fo < fr, accept x. and terminate the iteration; otherwise (if
fe > fr), accept z, and terminate the iteration.
4. Contract.

If f, > fn, perform a contraction between z and the better of z, 41 and z,.
a. Outside. If f, < f, < foy1 (e, 2, is strictly better than z,,41), perform an outside
contraction: calculate

z. =2+ y(x, — I)
and evaluate f. = f(x.). If f. < f-, accept z. and terminate the iteration; otherwise, go to
step 5 (perform a shrink).
b. Inside. If f, > foq1 (i.e., 2y 41 is better than x, ), perform an inside contraction: calculate

2, =T — (T —ny1)

and evaluate f, = f(z.). If f. < fao41, accept @, and terminate the iteration; otherwise, go to
step 5 (perform a shrink).



4. The values of f are ‘noisy’. For example, the calculated value of f may depend on discretization,
sampling on a grid, inaccurate data, or an adaptively solved subcalculation (such as numerical
quadrature).

In many of the practical problems where such functions occur, a highly accurate solution is neither
possible nor desired: it may be impossible because of uncertainties and errors in the underlying model
or data, or may be undesirable because of the unacceptably high cost required to attain it. In fact, a
frequent aim in these applications is ‘improvement’ rather than ‘optimization’. Thus the crucial issue
is finding a better answer quickly; asymptotic convergence properties are irrelevant. Examples of
such real-world problems abound in medicine, chemistry, and chemical engineering; see, for example,
[1] for a fascinating problem in cancer chemotherapy, and the large list of references in [28].

To minimize or improve a function with the properties listed above, the best choice is a direct
search method. Unfortunately, this term is not precisely defined. Two necessary qualifications are:

e A direct search uses only function values;
e A direct search method does not ‘in its heart’ develop an approximate gradient.

The second criterion is of course ill-defined: its intent is primarily to exclude methods such as
finite-difference quasi-Newton methods that construct a vector subsequently treated as if it were the
gradient, but one could argue that any comparison of function values constitutes development of an
approximate gradient. Despite this ambiguity, there is general agreement about the methods that
do and do not qualify as direct search methods; see, for example, the comments in [24, 4, 27].

2. A brief history of direct search methods before 1965

Direct search methods were first suggested in the 1950s and continued to be proposed at a steady rate
during the 1960s. These methods were typically presented and justified in terms of low-dimensional
geometric intuition rather than mathematical theory; new algorithms were motivated by a desire to
overcome observed or perceived inefficiencies of earlier methods. A 1972 survey article by Swann
[23] summarizes the state of the art in direct search methods at that time.

From today’s perspective, many of the earliest direct search techniques exhibit a large degree of
commonality. In fact, Torczon’s convergence theory [26], to be discussed later, applies to three of
the oldest direct search methods: a coordinate search method with fixed step sizes implemented by
Fermi and Metropolis to fit experimental data on the Los Alamos Maniac computer (mentioned in
[6]); evolutionary operation as proposed by Box in 1957 [2]; and the 1961 Hooke and Jeeves pattern
search method [8] based on automata theory.

The important class of simplez-based direct search methods was introduced in 1962 by Spendley,
Hext and Himsworth [22]. A simplex-based method constructs an evolving pattern of n + 1 points
in R™ that are viewed as the vertices of a simplex. (A simplex in two dimensions is a triangle; a
simplex in three dimensions is a tetrahedron.) In [22], a new simplex is formed at each iteration
by reflecting away from the vertex with the largest value of f, or by contracting toward the vertex
with the smallest value of f. With this approach, the angles of every simplex remain the same
throughout, even though the simplex may grow or decrease in size.

The most famous simplex-based direct search method was proposed by Nelder and Mead in their
1965 paper [12]. The Nelder-Mead method is based on the idea in [22] of creating a sequence of
changing simplices, but deliberately modified so that the simplex ‘adapts itself to the local landscape’
[12]. We next describe the Nelder-Mead method in detail.

3. The Nelder-Mead direct search method

At each iteration of the Nelder-Mead algorithm, we have a current simplex, defined by its n + 1
vertices, each a point in R”, along with the corresponding values of f. Iteration & begins by ordering
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Abstract

The need to optimize a function whose derivatives are unknown or non-existent arises
in many contexts, particularly in real-world applications. Various direct search meth-
ods, most notably the Nelder-Mead ‘simplex’ method, were proposed in the early 1960s
for such problems, and have been enormously popular with practitioners ever since.
Nonetheless, for more than twenty years these methods were typically dismissed or ig-
nored in the mainstream optimization literature, primarily because of the lack of rigorous
convergence results. Since 1989, however, direct search methods have been rejuvenated
and made respectable. This paper summarizes the history of direct search methods, with
special emphasis on the Nelder-Mead method, and describes recent work in this area.

This paper is based on a plenary talk given at the Biennial Dundee Conference on
Numerical Analysis, Dundee, Scotland, 1995.

1. Introduction

Unconstrained optimization—the problem of minimizing a nonlinear function f(x) for # € R"—
is important in a wide variety of applications. When the function to be minimized has suitable
smoothness properties, unconstrained problems can often be solved routinely using techniques based
on Newton’s method. The underlying approach is to develop a model function—usually quadratic—
derived from local gradient and Hessian information about f, and then to calculate a ‘good’ step
based on the model. The fundamental theory of Newton-based methods has been understood for
more than twenty years, although a few open issues remain. (See [13] for a survey of theory in uncon-
strained optimization.) The most active areas of research about smooth unconstrained optimization
today involve the large-scale case, particularly the associated linear algebraic issues.

This paper focuses on a completely different set of unconstrained problems, for which Newton-
based methods are inappropriate or inapplicable. We consider minimization of a nonlinear function
f with one or more of the following properties:

1. Calculation of f is very expensive or time-consuming. For example, each value of f may be
obtained by solving a costly numerical subproblem or performing a sequence of laboratory
experiments.

2. Exact first partial derivatives of f cannot be calculated. Either the gradient does not exist—for
example, when f is unpredictably discontinuous—or f is defined from a complex or convoluted
computational structure that obviates application of automatic differentiation techniques.

3. Numerical approximation of the gradient of f is impractically expensive or slow.

*Citation: M. H. Wright (1996), “Direct search methods: once scorned, now respectable”, in D. F. Griffiths and
G. A. Watson (eds.), Numerical Analysis 1995 (Proceedings of the 1995 Dundee Biennial Conference in Numerical
Analysis), 191-208, Addison Wesley Longman, Harlow, United Kingdom.



