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8. Closing thoughts 11the prevalence of this path to failure: in many of the instances when the Nelder-Mead methodbogs down, the simplex is indeed drastically deformed, with a small volume and very ill-conditionedmatrix of edges. In most of these situations, however, the function being minimized has highlyelongated contours and a very ill-conditioned Hessian, so that the simplex becomes misshapen byresponding to the local behavior of f .In this context, it is interesting to recall that one of the original intentions of Nelder and Meadwas to improve e�ciency by encouraging the simplex to modify its shape in accordance with thecontours of f . Hence precisely the same property of the Nelder-Mead method|its adaptation tothe behavior of f|may account for both its successes and failures. Note that a near-loss of linearindependence cannot happen to direct search methods whose vertices lie on a scaled lattice (such asthe pattern search methods analyzed by Torczon [26]), nor to methods that force the angles of thesimplex to stay uniformly bounded away from zero (such as the method of Tseng [27] when m = n).Another potential cause of failure is suggested by Torczon [24], who presents numerical evidencethat the Nelder-Mead method fails when its `search direction' (the vector �x� xn+1; see Section 3)becomes nearly orthogonal to the negative gradient. This observation may be related to the con-ventional wisdom that performance of the Nelder-Mead method su�ers as the problem dimensionincreases. For example, it is reported in [30] that, when minimizingPni=1 x2i with n = 32 for one ini-tial con�guration, the condition number of the simplex edge matrix never exceeds 150, and all sidesof the simplex range between 0:5 and 0:9 in length; nonetheless, the best function value hovers atapproximately 0:25 for several thousand iterations. The simplex in this case, although well-behaved,has in e�ect become misoriented with respect to the contours of f . For a more detailed analysis, see[30].It is not yet known whether these observed behavior patterns of the Nelder-Mead method can berigorously analyzed and fully explained. At the very least, understanding why the method fails mayallow us to design computational tests that warn when trouble begins. Ideally, our analysis wouldalso indicate what could be done to help the method recover. Tests thus far suggest that a suitableadaptive restart strategy can lead to substantial improvements in e�ciency [30].8. Closing thoughtsSince their �rst appearance in the 1950s, direct search methods have experienced two almost-disparate histories. They have remained astoundingly popular with practitioners for more than30 years, and have retained this loyalty by repeatedly solving important practical problems thatother methods could not handle. In contrast, during this same period direct search methods werebeing relegated from a mainstream position in the optimization community during the 1960s toless-than-honored status by the end of the 1980s. As we have seen, there are very good reasons forthis disfavor|non-existent theory as well as erratic and unreliable performance.The role of direct search methods is now undergoing yet another change. As discussed in Sec-tion 5, mathematical underpinnings are being provided by the evolving body of convergence theoryfor pattern search methods and other direct search methods. Even the Nelder-Mead method has agrowing theory of its own (see Section 6), and we seem at the time of this writing to be within areasonable distance of understanding its key mathematical properties, including the causes of failure.From the viewpoint of practice, optimization researchers are increasingly interested in the kindsof applications described at the beginning of this paper, where every function evaluation is preciousand costly. Direct search methods constitute one of the few viable alternatives for addressing suchproblems, especially those in which `improvement' is sought; hence direct search methods are neededthat combine theoretical soundness with both reliability and e�ciency. It is still unclear which directsearch methods will ultimately emerge as the most e�ective. Exactly as in large-scale optimization,the `best' method is likely to be problem-dependent.Direct search methods o�er opportunities today not only for enlightening new theory, but alsofor successful solution of important real-world problems. This author therefore believes that direct



10 Some light has recently been shed on question (iv) by McKinnon [11], who gives a strictly convexcontinuously di�erentiable function in two dimensions for which the Nelder-Mead simplices convergeto a non-minimizing point. In the McKinnon example, the best vertex of the initial simplex is anon-minimizing point of discontinuity in the second derivatives. By construction, every Nelder-Meaditeration is a contraction in which the best point stays �xed, so that all vertices converge to theoriginal best vertex. Thus McKinnon provides a counterexample to the hypothesis that the Nelder-Mead simplices always converge to the minimizer of a continuously di�erentiable strictly convexfunction in two dimensions.A few positive results are also emerging. Lagarias et al. [9] have established convergence of theNelder-Mead method to a minimizer for strictly convex one-dimensional functions with boundedlevel sets. They have also established a variety of convergence results for strictly convex functionswith bounded level sets in dimension two:1. The function values at all vertices converge to the same value.2. The simplices have volumes converging to zero, i.e., they collapse to a single point or straightline segment.3. The simplices in the Nelder-Mead algorithm with no expand step have diameter converging tozero.The mathematics used to obtain these results is quite di�erent from the standard proof techniquesin nonlinear optimization. In [9], the Nelder-Mead algorithm is interpreted as a discrete dynamicalsystem in which the iterations are `driven' by the function values, and where permitted sequencesof moves are restricted because of the descent requirement and the properties of strictly convexfunctions.The question of whether the Nelder-Mead simplices converge to a minimizer for a strictly convexquadratic function remains open at this time. No counterexample like McKinnon's is known for thequadratic case, but neither is there a proof of convergence to a minimizer, even in dimension 2.Much analysis needs to be done to complete our theoretical understanding of this popular al-gorithm. A particularly important question involves the e�ects of dimensionality, since the Nelder-Mead folklore consistently states that the method may fail in higher dimensions. Clues about thetheoretical di�culties are suggested by the conditions imposed in convergence theories for better-understood direct search methods, which include some combination of `nice' simplices, a scaledlattice structure, or a su�cient descent condition. It would be useful to know whether (and, if so,how) the absence of these properties in the Nelder-Mead method allows pathologies that lead tofailure.7. The Nelder-Mead method: more about practiceThe lack of theory about the Nelder-Mead method has obviously not impeded the thousands of prac-titioners who have happily used it since 1965. The simplicity and (wrongly) perceived robustnessof the Nelder-Mead method, as well as the convenience of not having to provide derivatives, are itsgreat strong points. Furthermore, it is undeniable that the Nelder-Mead method can sometimes bemore e�cient|even much more e�cient|than alternative methods. For example, extensive numer-ical experiments by Wright [30] show that the Nelder-Mead method can converge to an acceptablyaccurate solution with substantially fewer function evaluations than multidirectional search or asteepest descent method based on �nite-di�erence gradients.Unfortunately, the results in [30] also show that the Nelder-Mead method can be horri�callyine�cient and unreliable. Given this huge range in performance, it seems desirable to analyze whythe Nelder-Mead method's behavior varies so drastically. Various theories have been o�ered, but noexplanation yet has been entirely convincing.A longstanding piece of Nelder-Mead folklore is that the method fails when the simplex collapsesinto a subspace, or becomes extremely elongated and distorted in shape. The results in [30] con�rm



6. The Nelder-Mead method: new theory 9with respect to a subset of its m best vertices, where m = 1 corresponds to the multidirectionalsearch algorithm [24], and m = n corresponds to the Nelder-Mead method. (In addition, whenm = n the simplex angles are forced to stay uniformly bounded away from zero.) Assuming that fis continuously di�erentiable, bounded below, and has bounded level sets, Tseng proves that eitherthe forti�ed-descent method terminates with a stationary point of f , or else at least one clusterpoint of the best vertices is a stationary point. A potentially signi�cant feature of Tseng's methodsis that the number of evaluations of f per iteration decreases as m increases. Hence for large mthese methods may be more e�cient than multidirectional search or other pattern search methods(which necessarily require a multiple of n function evaluations at every iteration).The methods proposed by Yu, Rykov, and Tseng have in common that they allow a generalizedoperation of re
ection, through varying subsets of the simplex vertices, and that convergence of themethods can be proved under suitable assumptions. For all of these methods, however, publishednumerical results are either very limited or non-existent.A di�erent theme in recent work on non-derivative methods is the development of methods withimproved performance on smooth functions. As already observed, the logic of the direct searchalgorithms described thus far (except for Rykov's) depends only on the ordering of the functionvalues, not on their numerical values. If one is prepared to assume some smoothness propertiesabout f , the idea naturally arises of using the already-calculated function values to build a modelof f , and then to compute the next trial point based on the model. Powell [16, 17], Buckley and Ma[4], and Conn and Toint [5] have considered direct search methods based on model-building. Alongwith theoretical analysis, these authors report good numerical performance when their methods areapplied to suitably smooth test problems.6. The Nelder-Mead method: new theoryGiven the substantial progress just described on alternative direct search methods, it is logical towonder why we should not simply abandon the Nelder-Mead method. Beyond sentiment, there aretwo good reasons for not doing so: the need for a clear theoretical understanding of this nearly ubiq-uitous and deceptively simple method, and the potential for developing an improved Nelder-Mead-like algorithm that retains the good features of the original method while avoiding its di�culties.The theoretical questions will be discussed in this section; practical implications are considered inSection 7.From a theoretical perspective, an unsatisfactory gaping hole persists that should be �lled beforethe Nelder-Mead method is left behind. As noted previously, none of the convergence theory pub-lished so far applies to the original Nelder-Mead method. Even in the most closely related work|ofWoods [29] and Tseng [27]|the analysis di�ers in crucial ways. Woods treats an algorithm with astronger descent condition; and in the version of Tseng's method analogous to Nelder-Mead (withm = n), forti�ed descent is imposed at each iteration along with a requirement that the angles ofthe simplices stay bounded away from zero. It seems important to determine rigorously, if possi-ble, whether the Nelder-Mead method does (or does not) converge on any class of function, in anydimension.Woods [29] has already shown that the Nelder-Mead simplices can converge to a non-minimizingpoint for a nonconvex function in two dimensions. However, many other questions remain:(i) Do the function values at all vertices necessarily converge to the same value?(ii) Does the volume of the simplices converge to zero?(iii) Do all vertices of the simplices converge to the same point?(iv) Do all vertices converge to a stationary point of f?It would be of interest to know whether there are classes of functions in any dimension for whichthese questions can be answered `yes'.



8 Figure 3 depicts the re
ected, expanded, and contracted simplices in the multidirectional searchalgorithm, with � = 2 and 
 = 12 . Note that, in contrast to the Nelder-Mead simplices shown inFigures 1 and 2, the new simplex always retains the same shape (angles) as the original simplex,although it may grow or decrease in size. The contraction of the multidirectional search method isanalogous to the shrink in the Nelder-Mead method in that a new simplex is created by moving allnon-best vertices toward the best vertex.The number of function evaluations required by a multidirectional search iteration is an integermultiple of 2n. If one of the initial re
ection, expansion, or contraction steps produces a strictimprovement over f1, the iteration terminates after 2n function evaluations. If not, the sequence ofre
ection, expansion and/or contraction is repeated with a contracted simplex until an improved bestfunction value is found, where each cycle costs a further 2n function evaluations. Consequently, amultidirectional search method can require substantially more function evaluations than the Nelder-Mead method when the latter is performing well; recall that a typical (non-shrink) Nelder-Meaditeration requires either one or two function evaluations. If, however, the multidirectional searchmethod is implemented appropriately on a parallel computer with a su�ciently large number ofprocessors, the n function evaluations needed for each re
ection, expansion, or contraction step canbe performed in parallel. See [24, 7] for further discussion about implementation issues arising inparallel computing.A great advantage of the multidirectional search method is its strong convergence properties,which have been re�ned and extended by Torczon [26] to include all `pattern search' methods|broadly speaking, direct search methods that generate only points on a scaled lattice. It is shownin [26] that, when a pattern search method is applied to a continuously di�erentiable function withbounded level sets, lim infk!1 krf(x(k)1 )k = 0;where x(k)1 denotes the best vertex at iteration k. (A common framework for several methods andcomplete details of other convergence results are also given in [26].)The key ingredients in Torczon's convergence proofs are uniform linear independence of thesimplex edges at every iteration, the previously mentioned scaled lattice structure of all generatedpoints, and the step control strategy. These features together ensure that pathological simplices andsteps cannot arise in pattern search methods. As noted before, a point of particular interest is thatsuch favorable convergence properties apply even though the methods require only simple descent inthe best function value. Torczon's general theory applies to coordinate search, evolutionary design[2], the Hooke-Jeeves method [8], and multidirectional search [24], but not to the Nelder-Meadmethod.Theoretical analysis of several 
avors also exists for some of the more recently proposed directsearch methods. In particular, Yu [31] analyzes a version of the Spendley, Hext and Himsworthmethod [22] with a su�cient descent (rather than simple descent) condition, where the descentcriterion involves the squared simplex diameter. When this method is applied to a continuouslydi�erentiable function f with bounded level sets, it is shown in [31] that at least one cluster pointof the iterates is a stationary point of f .The direct search methods of Rykov [19, 20, 21] are characterized by two properties: (i) thesubset of vertices to be re
ected at each iteration varies adaptively, and is chosen based on one of sixcriterion functions, most of which depend on numerical function values; and (ii) a su�cient descentcondition similar to that of Yu [31] must be satis�ed at each iteration. Certain convergence resultshave been proved for Rykov's methods when applied to a convex function with Lipschitz-continuousgradient and bounded level sets. The use in these methods of the numerical function values at thevertices can be viewed as a major philosophical di�erence from Nelder-Mead and other direct searchmethods, and suggests a point of similarity with the model-building methods to be mentioned atthe end of this section.In 1995, Tseng [27] suggested a class of simplex-based direct search methods involving `forti�eddescent'|again, a stronger condition than simple descent. Tseng allows re
ection of each simplex



5. A renaissance for direct search methods 7Mead method, but these now involve the n edges of the simplex emanating from the best vertex, sothat the entire simplex is re
ected, expanded, and contracted. A multidirectional search iterationsucceeds when it �nds a point of strict improvement over the best vertex, in contrast to the muchweaker condition in a Nelder-Mead iteration of �nding a strict improvement compared to the worstpoint. As in Nelder-Mead, however, the acceptance criterion in multidirectional search is only simple(rather than su�cient) decrease.Expansion and contraction coe�cients, here denoted by � and 
, are needed in the multidirec-tional search method, with standard values � = 2 and 
 = 12 . (In e�ect, the re
ection coe�cientfrom the Nelder-Mead method is implicitly taken as 1.)Iteration k of the multidirectional search algorithm.1. Order.The best vertex is labeled as x1, so that f(x1) = arg minif f(xi) g .2. Re
ect.De�ne the n re
ected vertices, x(i)r = 2x1 � xi, for i = 2, . . . , n+ 1. Evaluate f (i)r = f(x(i)r ).If minif f (i)r g < f1, go to step 3; otherwise, go to step 4.3. Expand.Compute the expanded vertices, x(i)e = x1 + �(x1 � xi), for i = 2, . . . , n + 1, and evaluatef (i)e = f(x(i)e ). If minif f (i)e g < minif f (i)r g, then accept the expanded simplex, i.e., xi isreplaced by x(i)e for i = 2, . . . , n + 1 ; otherwise, accept the re
ected simplex, i.e., xi isreplaced by x(i)r . In either case, terminate the iteration.4. Contract.Calculate the contracted vertices, x(i)c = x1 + 
(xi � x1), for i = 2, . . . , n + 1, and evaluatef (i)c = f(x(i)c ). For i = 2, . . . , n+1, replace xi by x(i)c . Terminate the iteration if minif f (i)c g <f1; otherwise, return to step 2.x1 x2x3x(2)r x(3)r x1x3 x2x(2)e
x(3)e

x(2)cx(3)cx1x3 x2
Figure 3: Multidirectional search re
ection, expansion, and contraction. The original simplex isindicated with a dashed line.



6 The �rst theoretical results concerning the Nelder-Mead method appeared in the 1985 Ph. D.thesis of Woods [29]. Woods provides an interesting negative result by depicting a two-dimensionalnonconvex function for which every Nelder-Mead iteration is a shrink and all vertices converge to anon-minimizing point.Woods then considers strictly convex functions with bounded level sets, and de�nes a modi�edNelder-Mead method with a stricter descent requirement for accepting the re
ected point in step 2of the algorithm (see Section 3). Under these assumptions Woods proves that: (i) every convergentsubsequence of the simplices generated by the modi�ed algorithm converges to a degenerate simplex(a single point); (ii) the values of f at all limit points are equal; and (iii) the set of limit points isconnected. Although a breakthrough in the sense of producing some theory about the Nelder-Meadmethod, these results leave many questions unanswered. The proofs do not apply to the originalNelder-Mead method; convergence of the simplices to a single point is not guaranteed, but onlyconvergence of a subsequence; and no properties of the limit points were veri�ed.In addition to concerns about the lack of theory, mainstream optimization researchers were notimpressed by the Nelder-Mead method's practical performance, which can be appallingly poor. Evenon well-behaved functions, the Nelder-Mead method can `bog down' (i.e., take endless iterations whilemaking negligible progress); see, for example, [30]. When this happens, the method often satis�esthe criterion (3.2) for a small-enough simplex (or the analogous criterion involving close functionvalues) and terminates, despite being nowhere close to a minimizer. The proliferation of papersproposing variations on Nelder-Mead|see [3], for example|strongly indicates that the originalmethod can be unsatisfactory in practice. Torczon [24] describes substantial numerical evidencethat the Nelder-Mead method is not robust.A large amount of folklore, mostly undocumented and imprecise, has accumulated about theNelder-Mead method. For example, several authors state that the method is good only for smallproblems, but there is no clear de�nition of `small', nor any indication as to why the method mightdeteriorate with dimensionality. Frequent warnings occur that the Nelder-Mead simplexmay collapseinto a nearly degenerate �gure, and that restarting with a fresh simplex may be helpful. However,no guidelines are provided for making these decisions in an implemented algorithm.Given the combination of no theory and sometimes dreadful practice, why do so many people usethe Nelder-Mead method? The answer is probably that, despite its bad features, the Nelder-Meadmethod often successfully locates a greatly improved solution with many fewer function evaluationsthan any of its competitors. Also, users may simply be unaware of the potential di�culties, whichare not widely documented. In Numerical Recipes [18], for example, the Nelder-Mead method isdescribed rather mildly as `not very e�cient in terms of the number of function evaluations that itrequires'.We shall return in Section 6 to current research on the Nelder-Mead method.5. A renaissance for direct search methodsPapers proposing simplex-based direct search methods with improved convergence properties werepublished in 1979 by Yu [31, 32] in China, and in 1980 by Rykov [19, 20] in the Soviet Union.However, until the last few years these papers were not widely known in the English-languageoptimization research community.For that community, a renaissance of interest in direct search methods began in 1989 withTorczon's Ph. D. thesis [24]. Her thesis and subsequent papers, some co-authored with Dennis,propose a new form of direct search method|the multidirectional search method [24, 7, 25]. Aprimary motivation for the multidirectional search method was a desire for e�ciency in a parallelcomputing environment.The multidirectional search method is simplex-based, and consequently draws on ideas in [22, 12].Each iteration is associated with a current simplex whose best vertex (with lowest function value)is so labeled. Operations called re
ection, expansion and contraction are de�ned as in the Nelder-



4. The state of the Nelder-Mead method 52. A Nelder-Mead iteration requires one function evaluation when the iteration terminates instep 2, two function evaluations when termination occurs in step 3 or step 4, and n + 2function evaluations if a shrink step occurs. The Nelder-Mead method is thus particularlyparsimonious in function evaluations per iteration compared to other direct search methods;see Section 5.3. The next Nelder-Mead simplex is determined by the coordinates of the simplex vertices andthe order information (3.1) about f at the vertices|not the numerical function values.4. In the expand step, the method in the original Nelder-Mead paper accepts xe if f(xe) < f1,and accepts xr otherwise. Standard practice today (followed in the algorithm given above)accepts the better of xr and xe if both give a strict improvement over x1.To specify a complete Nelder-Mead algorithm, we need to de�ne the initial simplex and a set oftermination criteria. In the absence of information about the particular function being minimized, itis customary to specify a starting point in Rn that is taken as one of the initial simplex vertices. Theother n vertices are then generated in one of two ways: perturbing the starting point by a speci�edstep along the n coordinate directions, or creating a regular simplex with speci�ed edge length andorientation. For some problems, of course, it may be possible for the user to specify n + 1 suitablestarting vertices.For any non-derivative method, the issue of termination is problematical as well as highly sensitiveto problem scaling. Since gradient information is unavailable, it is provably impossible to verifycloseness to optimality simply by sampling f at a �nite number of points. Most implementationsof direct search methods terminate based on two criteria intended to re
ect the progress of thealgorithm: either the function values at the vertices are close, or the simplex has become very small.In practice, both criteria have been interpreted in various ways. For example, following Woods [29],Torczon [24] suggests termination when the current vertices x1, . . . , xn+1 satisfymax2�i�n+1kxi � x1k � � max(1; kx1k); (3.2)where � is a tolerance. Either form of termination|close function values or a small simplex|canbe misleading for badly scaled functions. For discussions of termination criteria, see [15, 29, 24, 18].4. The state of the Nelder-Mead methodSince its publication in 1965, the Nelder-Mead algorithm has been used in an extraordinarily widevariety of contexts, especially in chemistry, chemical engineering, and medicine. There are literallythousands of published papers about applications of the Nelder-Mead method, as well as numerousproposed variants intended to overcome its defects. The 1991 book [28] contains a fascinatingchronological bibliography showing a steady growth in citations involving the Nelder-Mead method.Nelder-Mead codes appear in the best-selling book Numerical Recipes [18] and in the pervasiveMatlabTM optimization toolbox [10].Despite its wide use, until quite recently the Nelder-Mead method and its ilk have been depre-cated, scorned, or ignored by almost all of the mainstream optimization community. Direct searchmethods are characterized in many textbooks as `ad hoc' or `heuristic', with little to recommendthem, and are sometimes not mentioned at all. This negative attitude arises in part as a reactionto users who might choose a Nelder-Mead method simply for its ease of use, even when minimizinga smooth and inexpensive function well suited to a more reliable gradient-based method. In addi-tion, however, there are strong theoretical and practical reasons for taking a dubious view of theNelder-Mead method.In retrospect, it is remarkable that for twenty years after publication of the Nelder-Mead method,no analysis of its theoretical properties was published. Theory is not mentioned in any of thepublications about the Nelder-Mead method from the 1960s and 1970s surveyed while preparing thepresent paper.



4 5. Perform a shrink step.De�ne n new vertices fromvi = x1 + �(xi � x1); i = 2; : : : ; n+ 1;and evaluate f at these points. The vertices of the simplex at the next iteration consist of x1,v2, . . . , vn+1.Figures 1 and 2 show the e�ects of re
ection, expansion, contraction and shrinkage for a simplexin two dimensions (a triangle), using the standard coe�cients � = 1, � = 2, 
 = 12 , and � = 12 .Observe that, except in a shrink, the one new vertex always lies on the (extended) line joining �xand xn+1. Furthermore, it is visually evident that the simplex shape undergoes a noticeable changeduring an expansion or contraction with the standard coe�cients.�x xrx3 �x xr xe
x3

Figure 1: Nelder-Mead simplices after a re
ection and an expansion step. The original simplex isshown with a dashed line.�x xrxcx3 �xx0cx3 x1Figure 2: Nelder-Mead simplices after an outside contraction, an inside contraction, and a shrink.The original simplex is shown with a dashed line.The Nelder-Mead method has several interesting properties:1. A successful non-shrink iteration produces a new vertex whose function value is strictly lessthan fn+1. This simple decrease requirement is much weaker than the su�cient decreaseconditions usually imposed in optimization convergence theory; see, for example, [14].



3. The Nelder-Mead direct search method 3and labeling the current set of vertices as x(k)1 , . . . , x(k)n+1 such thatf (k)1 � f (k)2 � � � � � f (k)n+1; (3.1)where f (k)i denotes f(x(k)i ). Because we seek to minimize f , we refer to x(k)1 as the best point, and tox(k)n+1 as the worst point. Consistent tie-breaking rules such as those given in [9] are required for thealgorithm to be well-de�ned. After calculating one or more trial points and evaluating f at thesepoints, the kth iteration generates a set of n+ 1 vertices that de�ne a di�erent simplex for the nextiteration.When the iteration index k is unimportant or clear from context, the superscript will be omitted.There are four possible operations: re
ection, expansion, contraction, and shrinkage, each associatedwith a scalar parameter. The coe�cients of re
ection, expansion, contraction, and shrinkage aredenoted respectively by �, �, 
, and �. According to the original Nelder-Mead paper [12], thesecoe�cients should satisfy � > 0, � > 1, 0 < 
 < 1, and 0 < � < 1. The standard, nearly universal,choices for these values are � = 1; � = 2; 
 = 12 ; and � = 12 :A generic Nelder-Mead iteration has two possible outcomes: (1) a single new vertex|the acceptedpoint|which replaces xn+1 (the worst point) in the set of vertices for the next iteration; or (2) ifa shrink is performed, a set of n new points that, together with x1, form the simplex at the nextiteration. A kind of `search direction' is de�ned by xn+1 and �x, the centroid of all vertices exceptxn+1.Iteration k of the Nelder-Mead algorithm.1. Order.Order the n + 1 vertices to satisfy f(x1) � f(x2) � � � � � f(xn+1), using a consistent tie-breaking rule; see, for example, [9].2. Re
ect.Compute the re
ection point xr fromxr = �x+ �(�x� xn+1);where �x is the centroid of the n best vertices (all except xn+1), i.e., �x =Pni=1 xi=n. Evaluatefr = f(xr). If f1 � fr < fn, accept the re
ected point xr and terminate the iteration.3. Expand.If fr < f1, calculate the expansion point xe fromxe = �x+ �(xr � �x);and evaluate fe = f(xe). If fe < fr, accept xe and terminate the iteration; otherwise (iffe � fr), accept xr and terminate the iteration.4. Contract.If fr � fn, perform a contraction between �x and the better of xn+1 and xr.a. Outside. If fn � fr < fn+1 (i.e., xr is strictly better than xn+1), perform an outsidecontraction: calculate xc = �x+ 
(xr � �x)and evaluate fc = f(xc). If fc � fr , accept xc and terminate the iteration; otherwise, go tostep 5 (perform a shrink).b. Inside. If fr � fn+1 (i.e., xn+1 is better than xr), perform an inside contraction: calculatex0c = �x� 
(�x � xn+1)and evaluate f 0c = f(x0c). If f 0c < fn+1, accept x0c and terminate the iteration; otherwise, go tostep 5 (perform a shrink).



2 4. The values of f are `noisy'. For example, the calculated value of f maydepend on discretization,sampling on a grid, inaccurate data, or an adaptively solved subcalculation (such as numericalquadrature).In many of the practical problems where such functions occur, a highly accurate solution is neitherpossible nor desired: it may be impossible because of uncertainties and errors in the underlying modelor data, or may be undesirable because of the unacceptably high cost required to attain it. In fact, afrequent aim in these applications is `improvement' rather than `optimization'. Thus the crucial issueis �nding a better answer quickly; asymptotic convergence properties are irrelevant. Examples ofsuch real-world problems abound in medicine, chemistry, and chemical engineering; see, for example,[1] for a fascinating problem in cancer chemotherapy, and the large list of references in [28].To minimize or improve a function with the properties listed above, the best choice is a directsearch method. Unfortunately, this term is not precisely de�ned. Two necessary quali�cations are:� A direct search uses only function values;� A direct search method does not `in its heart' develop an approximate gradient.The second criterion is of course ill-de�ned: its intent is primarily to exclude methods such as�nite-di�erence quasi-Newton methods that construct a vector subsequently treated as if it were thegradient, but one could argue that any comparison of function values constitutes development of anapproximate gradient. Despite this ambiguity, there is general agreement about the methods thatdo and do not qualify as direct search methods; see, for example, the comments in [24, 4, 27].2. A brief history of direct search methods before 1965Direct search methods were �rst suggested in the 1950s and continued to be proposed at a steady rateduring the 1960s. These methods were typically presented and justi�ed in terms of low-dimensionalgeometric intuition rather than mathematical theory; new algorithms were motivated by a desire toovercome observed or perceived ine�ciencies of earlier methods. A 1972 survey article by Swann[23] summarizes the state of the art in direct search methods at that time.From today's perspective, many of the earliest direct search techniques exhibit a large degree ofcommonality. In fact, Torczon's convergence theory [26], to be discussed later, applies to three ofthe oldest direct search methods: a coordinate search method with �xed step sizes implemented byFermi and Metropolis to �t experimental data on the Los Alamos Maniac computer (mentioned in[6]); evolutionary operation as proposed by Box in 1957 [2]; and the 1961 Hooke and Jeeves patternsearch method [8] based on automata theory.The important class of simplex-based direct search methods was introduced in 1962 by Spendley,Hext and Himsworth [22]. A simplex-based method constructs an evolving pattern of n + 1 pointsin Rn that are viewed as the vertices of a simplex. (A simplex in two dimensions is a triangle; asimplex in three dimensions is a tetrahedron.) In [22], a new simplex is formed at each iterationby re
ecting away from the vertex with the largest value of f , or by contracting toward the vertexwith the smallest value of f . With this approach, the angles of every simplex remain the samethroughout, even though the simplex may grow or decrease in size.The most famous simplex-based direct search method was proposed by Nelder and Mead in their1965 paper [12]. The Nelder-Mead method is based on the idea in [22] of creating a sequence ofchanging simplices, but deliberately modi�ed so that the simplex `adapts itself to the local landscape'[12]. We next describe the Nelder-Mead method in detail.3. The Nelder-Mead direct search methodAt each iteration of the Nelder-Mead algorithm, we have a current simplex, de�ned by its n + 1vertices, each a point inRn, along with the corresponding values of f . Iteration k begins by ordering
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