Generalized sampling
A new framework for image and signal reconstruction

Ben Adcock
Department of Mathematics
Simon Fraser University

Joint work with Anders Hansen (University of Cambridge)
Outline of the talk

Introduction

Generalized sampling

Reconstructions from Fourier samples

Generalized sampling for nonuniform samples

Generalized sampling and infinite-dimensional compressed sensing
Introduction

Generalized sampling

Reconstructions from Fourier samples

Generalized sampling for nonuniform samples

Generalized sampling and infinite-dimensional compressed sensing
Reconstructions from the Fourier transform

Fundamental problem: recover a image/signal f from pointwise samples of its Fourier transform (FT)

$$\mathcal{F} f(\omega) = \int_{\mathbb{R}^d} f(x) e^{2i\pi \omega \cdot x} \, dx.$$

E.g. Magnetic Resonance Imaging (MRI).
Key issues

1. The sampling scheme is **fixed** and cannot be altered.

2. Taking many samples is expensive/infeasible. Thus, one wants to reconstruct f using **as few samples** as possible.

3. Sampling frequencies $\{\omega_n\}$ may be **uniform** or **nonuniform**.

4. Samples are always **noisy**. Also other effects, e.g. **jitter**.
Key issues

1. The sampling scheme is fixed and cannot be altered.

2. Taking many samples is expensive/infeasible. Thus, one wants to reconstruct f using as few samples as possible.

3. Sampling frequencies $\{\omega_n\}$ may be uniform or nonuniform.

4. Samples are always noisy. Also other effects, e.g. jitter.
Key issues

1. The sampling scheme is fixed and cannot be altered.

2. Taking many samples is expensive/infeasible. Thus, one wants to reconstruct f using as few samples as possible.

3. Sampling frequencies $\{\omega_n\}$ may be uniform or nonuniform.

4. Samples are always noisy. Also other effects, e.g. jitter.
Key issues

1. The sampling scheme is fixed and cannot be altered.

2. Taking many samples is expensive/infeasible. Thus, one wants to reconstruct f using as few samples as possible.

3. Sampling frequencies $\{\omega_n\}$ may be uniform or nonuniform.

4. Samples are always noisy. Also other effects, e.g jitter.
The Shannon sampling theorem

Let $f \in L^2(\mathbb{R})$ with $\text{supp}(f) \subseteq [-1, 1]$. Then f is determined uniquely by

$$\{ \mathcal{F}f(n\epsilon) \}_{n \in \mathbb{Z}}, \quad (\epsilon \leq \frac{1}{2}).$$

Specifically,

$$f(x) = \epsilon \sum_{n \in \mathbb{Z}} \mathcal{F}f(n\epsilon)e^{2\pi i \epsilon nx}.$$

However, in practice, we cannot access or process all samples of f. Thus, Shannon’s Theorem gives rise to the approximation

$$f_N(x) = \epsilon \sum_{n=-N}^{N} \mathcal{F}f(n\epsilon)e^{2\pi i \epsilon nx}.$$

- In other words, the partial Fourier series of f.

The Shannon sampling theorem

Let $f \in L^2(\mathbb{R})$ with $\text{supp}(f) \subseteq [-1, 1]$. Then f is determined uniquely by

$$\{ \mathcal{F}f(n\epsilon) \}_{n \in \mathbb{Z}}, \quad (\epsilon \leq \frac{1}{2}).$$

Specifically,

$$f(x) = \epsilon \sum_{n \in \mathbb{Z}} \mathcal{F}f(n\epsilon) e^{2\pi i \epsilon nx}.$$

However, in practice, we cannot access or process all samples of f. Thus, Shannon’s Theorem gives rise to the approximation

$$f_N(x) = \epsilon \sum_{n=-N}^{N} \mathcal{F}f(n\epsilon) e^{2\pi i \epsilon nx}.$$

- In other words, the partial Fourier series of f.
Fourier series reconstructions

Let $\epsilon = \frac{1}{2}$, $N = 50$:

The function $f(x)$
Fourier series reconstructions

Let $\epsilon = \frac{1}{2}$, $N = 50$:

The functions $f(x)$ and $f_N(x)$
Fourier series reconstructions

Let $\epsilon = \frac{1}{2}$, $N = 50$:

The error $f(x) - f_N(x)$
Fourier series reconstructions

Let $\epsilon = \frac{1}{2}$, $N = 100$:

The error $f(x) - f_N(x)$
Fourier series reconstructions

Let $\epsilon = \frac{1}{2}$, $N = 200$:

The error $f(x) - f_N(x)$

The coefficients $\mathcal{F}f(n\epsilon)$ decay very slowly as $|n| \to \infty$.
Main question

Given the first N Fourier samples $\{\mathcal{F}f(n\epsilon)\}_{n=-N}^{N}$, is there a better way to recover f than the Fourier series f_N?
Other ways to reconstruct f from its samples

Both functions very poorly represented by f_N. However,

- f_1 is very well approximated by piecewise polynomials,
- f_2 is very well approximated by Haar wavelets.
Other ways to reconstruct \(f \) from its samples

Write

\[
 f_i(x) = \sum_{n=1}^{\infty} \alpha_n \phi_n, \quad i = 1, 2,
\]

where \(\{\phi_n\}_{n \in \mathbb{N}} \) are either piecewise polynomials or Haar wavelets.

\[
\begin{array}{c}
\text{coefficients} \ \{\alpha_n\} \ \text{for} \ f_1 \\
\text{coefficients} \ \{\alpha_n\} \ \text{for} \ f_2
\end{array}
\]

- In either case, if we knew \(\alpha_1, \ldots, \alpha_{32} \) we could recover \(f_i \) with error \(\approx 10^{-10} \).
Main problem

More generally, let

$$\hat{f}_n, \quad n \in \mathbb{N},$$

be measurements of f (e.g. samples of $\mathcal{F}f$).

Key assumption: suppose that we know that f has a ‘good’
representation in a basis $\{\phi_n\}$, i.e. $\alpha_n \to 0$ rapidly.

Main problem:

Given the first N measurements $\{\hat{f}_n\}_{n=1}^N$ recover the coefficients
$\{\alpha_n\}$ in the basis $\{\phi_n\}$.
Main problem

More generally, let
\[\hat{f}_n, \quad n \in \mathbb{N}, \]
be measurements of \(f \) (e.g. samples of \(\mathcal{F}f \)).

Key assumption: suppose that we know that \(f \) has a ‘good’ representation in a basis \(\{ \phi_n \} \), i.e. \(\alpha_n \to 0 \) rapidly.

Main problem:

Given the first \(N \) measurements \(\{ \hat{f}_n \}_{n=1}^{N} \) recover the coefficients \(\{ \alpha_n \} \) in the basis \(\{ \phi_n \} \).
Key consideration I: quasi-optimality

Suppose that we have a mapping

\[\mathcal{L} : \{ \hat{f}_1, \ldots, \hat{f}_N \} \mapsto \{ \tilde{\alpha}_1, \ldots, \tilde{\alpha}_M \}. \]

The coefficients \(\alpha_1, \alpha_2, \ldots \).
Key consideration I: quasi-optimality

Suppose that we have a mapping

\[\mathcal{L} : \{ \hat{f}_1, \ldots, \hat{f}_N \} \mapsto \{ \tilde{\alpha}_1, \ldots, \tilde{\alpha}_M \}. \]

The coefficients \(\alpha_1, \alpha_2, \ldots \) and approximate coefficients \(\tilde{\alpha}_1, \ldots, \tilde{\alpha}_M \).
Key consideration I: quasi-optimality

Suppose that we have a mapping

$$\mathcal{L} : \{\hat{f}_1, \ldots, \hat{f}_N\} \mapsto \{\tilde{\alpha}_1, \ldots, \tilde{\alpha}_M\}.$$

Error equation:

$$f - \sum_{n=1}^M \tilde{\alpha}_n \phi_n = \sum_{n=1}^M (\alpha_n - \tilde{\alpha}_n) \phi_n + \sum_{n=M+1}^{\infty} \alpha_n \phi_n$$

total error \quad \text{regularization error} \quad \text{truncation error}

It's important that

regularization error \approx \text{truncation error}, \quad \text{(quasi-optimality).}$$
Key consideration II: numerical stability

The mapping \(\mathcal{L} : \{\hat{f}_1, \ldots, \hat{f}_N\} \mapsto \{\tilde{\alpha}_1, \ldots, \tilde{\alpha}_M\} \) should be numerically stable, i.e. the condition number

\[
\|\mathcal{L}\|\|\mathcal{L}^{-1}\| \ll \infty,
\]

to avoid large errors due to

- round-off error,
- noise,
- jitter,
- shock capturing.
Introduction

Generalized sampling

Reconstructions from Fourier samples

Generalized sampling for nonuniform samples

Generalized sampling and infinite-dimensional compressed sensing
Hilbert space formulation

Let \mathcal{H} be a separable Hilbert space over \mathbb{C} with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$.

- Let $\{\psi_n\}_{n \in \mathbb{N}}$ be an orthonormal sampling basis.
- Let $\{\phi_n\}_{n \in \mathbb{N}}$ be an orthonormal reconstruction basis.

E.g. Fourier sampling: $\mathcal{H} = L^2(-1, 1)$, $\psi_n(x) := e^{2\pi i \epsilon nx}$.

The reconstruction problem

Given the first N measurements

$$\hat{f}_n = \langle f, \psi_n \rangle, \quad n = 1, \ldots, N,$$

of $f \in \mathcal{H}$, compute the coefficients $\{\alpha_n\}_{n \in \mathbb{N}}$ of f with respect to the reconstruction basis $\{\phi_n\}_{n \in \mathbb{N}}$.

15 / 47
Key idea

Allow the parameters

- \(N \) – the number of measurements,
- \(M \) – the number of coefficients \(\tilde{\alpha}_1, \ldots, \tilde{\alpha}_M \) to be computed, to differ. Specifically, let \(N > M \).
Best possible reconstruction

The best reconstruction of M coefficients is obviously

$$\tilde{\alpha}_m = \alpha_m = \langle f, \phi_m \rangle, \quad m = 1, \ldots, M.$$

The reconstruction

$$f_M = \sum_{m=1}^{M} \alpha_m \phi_m,$$

is the **orthogonal projection** of f onto

$$T_M = \text{span}\{\phi_1, \ldots, \phi_M\} \subset H, \quad \text{(reconstruction space)}.$$

Of course, we don’t know $\{\alpha_m\}_{m=1}^{M}$. However, note that, by definition,

$$\langle f_M, \phi_m \rangle = \langle f, \phi_m \rangle, \quad m = 1, \ldots, M.$$
Best possible reconstruction

The best reconstruction of M coefficients is obviously

$$\tilde{\alpha}_m = \alpha_m = \langle f, \phi_m \rangle, \quad m = 1, \ldots, M.$$

The reconstruction

$$f_M = \sum_{m=1}^{M} \alpha_m \phi_m,$$

is the orthogonal projection of f onto

$$T_M = \text{span}\{\phi_1, \ldots, \phi_M\} \subset H, \quad \text{(reconstruction space)}.$$

Of course, we don’t know $\{\alpha_m\}_{m=1}^{M}$. However, note that, by definition,

$$\langle f_M, \phi_m \rangle = \langle f, \phi_m \rangle, \quad m = 1, \ldots, M.$$

Generalized sampling

Define $\mathcal{P}_N : H \to S_N := \text{span}\{\psi_1, \ldots, \psi_N\}$ by

$$\mathcal{P}_Ng = \sum_{n=1}^{N} \langle g, \psi_n \rangle \psi_n.$$

Note: \mathcal{P}_N is the orthogonal projection onto S_N.

Generalized sampling: define $f_{N,M} = \sum_{m=1}^{M} \tilde{\alpha}_m \phi_m \in T_M$ by

$$\langle \mathcal{P}_N f_{N,M}, \phi_m \rangle = \langle \mathcal{P}_N f, \phi_m \rangle, \quad n = 1, \ldots, M.$$

- A linear system for $\tilde{\alpha}_1, \ldots, \tilde{\alpha}_M$ involving only the given measurements $\hat{f}_1, \ldots, \hat{f}_N$.

Generalized sampling

Define $\mathcal{P}_N : H \rightarrow S_N := \text{span}\{\psi_1, \ldots, \psi_N\}$ by

$$\mathcal{P}_Ng = \sum_{n=1}^{N} \langle g, \psi_n \rangle \psi_n.$$

Note: \mathcal{P}_N is the orthogonal projection onto S_N.

Generalized sampling: define $f_{N,M} = \sum_{m=1}^{M} \tilde{\alpha}_m \phi_m \in T_M$ by

$$\langle \mathcal{P}_N f_{N,M}, \phi_m \rangle = \langle \mathcal{P}_N f, \phi_m \rangle, \quad n = 1, \ldots, M.$$

- A linear system for $\tilde{\alpha}_1, \ldots, \tilde{\alpha}_M$ involving only the given measurements $\hat{f}_1, \ldots, \hat{f}_N$.

Recall that

\[\langle f_{M}, \phi_{m} \rangle = \langle f, \phi_{m} \rangle, \quad m = 1, \ldots, M, \]

(1)

and

\[\langle P_{N}f_{N,M}, \phi_{m} \rangle = \langle P_{N}f, \phi_{m} \rangle, \quad n = 1, \ldots, M. \]

(2)

The operators \(P_{N} \to I \) strongly on \(\mathbb{H} \) as \(N \to \infty \). Thus

\[f_{N,M} \approx f_{M}, \quad N \to \infty. \]

Hence for sufficiently large \(N \), we expect ‘good’ behaviour of \(f_{N,M} \).
Main theorem

Let

\[C_{N,M} = \inf \{ \| P_N \phi \| : \phi \in T_M, \| \phi \| = 1 \} \].

Key point: for fixed \(M \), \(C_{N,M} \to 1 \) as \(N \to \infty \).

Theorem (BA, Hansen)

For each \(M \in \mathbb{N} \), there exists an \(N_0 \in \mathbb{N} \) such that \(f_{N,M} \) exists and is unique for all \(N \geq N_0 \), and satisfies the sharp bounds

\[\| f - f_M \| \leq \| f - f_{N,M} \| \leq \frac{1}{C_{N,M}} \| f - f_M \|. \]

Specifically, \(N_0 \) is the least \(N \) such that \(C_{N,M} > 0 \).
Main theorem

Let

\[C_{N,M} = \inf \{ \| P_N \phi \| : \phi \in T_M, \| \phi \| = 1 \} . \]

Key point: for fixed \(M \), \(C_{N,M} \to 1 \) as \(N \to \infty \).

Theorem (BA, Hansen)

For each \(M \in \mathbb{N} \), there exists an \(N_0 \in \mathbb{N} \) such that \(f_{N,M} \) exists and is unique for all \(N \geq N_0 \), and satisfies the sharp bounds

\[\| f - f_M \| \leq \| f - f_{N,M} \| \leq \frac{1}{C_{N,M}} \| f - f_M \| . \]

Specifically, \(N_0 \) is the least \(N \) such that \(C_{N,M} > 0 \).
Geometric interpretation

The map $f \mapsto f_{N,M}$ is precisely the oblique projection onto T_M along $[\mathcal{P}_N(T_M)]^\perp$. Moreover,

$$C_{N,M} = \cos \theta,$$

where θ is the angle between the subspaces T_M and $\mathcal{P}_N(T_M)$.

$\mathcal{P}_N(T_M)$ and $[\mathcal{P}_N(T_M)]^\perp$ cannot be near-perpendicular for large N. Hence $f_{N,M}$ is well-defined, and $f_{N,M} \approx f_M$.
Numerical implementation

The equations

\[\langle \mathcal{P}_N f_{N,M}, \phi_m \rangle = \langle \mathcal{P}_N f, \phi_m \rangle, \quad n = 1, \ldots, M, \]

are equivalent to a \(N \times M \) linear least squares system for \(\{\tilde{\alpha}_m\}_{m=1}^M \).

- One can also show that the condition number

\[\| \mathcal{L} \| \| \mathcal{L}^{-1} \| \leq \frac{1}{C_{N,M}}, \]

where \(\mathcal{L} : \{\hat{f}_1, \ldots, \hat{f}_N\} \mapsto \{\tilde{\alpha}_1, \ldots, \tilde{\alpha}_M\} \).

- The total computational cost in computing \(f_{N,M} \) is at worst

\[O \left(\frac{1}{C_{N,M}} NM \right). \]
The stable sampling rate

Define the stable sampling rate

$$\Theta(M; \theta) = \min \left\{ N \in \mathbb{N} : C_{N,M} > \theta \right\}, \quad \theta \in (0, 1).$$

For given M, setting $N \geq \Theta(M; \theta)$ ensures

1. Existence and uniqueness of $f_{N,M}$.
2. Numerical stability: $\|L\|\|L^{-1}\| \leq \frac{1}{\theta}$.
3. Quasi-optimality: $\|f - f_{N,M}\| \leq \frac{1}{\theta} \|f - f_M\|$.

Note:

- This is a fundamentally new viewpoint on reconstruction.
- $\Theta(M; \theta)$ is a realization of certain concepts in computational spectral theory concerning the computation of spectra of operators.
The stable sampling rate

Define the stable sampling rate

\[\Theta(M; \theta) = \min \{ N \in \mathbb{N} : C_{N,M} > \theta \}, \quad \theta \in (0, 1). \]

For given \(M \), setting \(N \geq \Theta(M; \theta) \) ensures

1. Existence and uniqueness of \(f_{N,M} \).
2. Numerical stability: \(\| L \| \| L^{-1} \| \leq \frac{1}{\theta} \).
3. Quasi-optimality: \(\| f - f_{N,M} \| \leq \frac{1}{\theta} \| f - f_M \| \).

Note:

- This is a fundamentally new viewpoint on reconstruction.
- \(\Theta(M; \theta) \) is a realization of certain concepts in computational spectral theory concerning the computation of spectra of operators.
Behaviour of the stable sampling rate

\(\Theta(M; \theta) \) can always be **computed numerically**. However, it is also vitally important to determine **analytic bounds**.

Examples of known bounds:

1. Fourier samples, Haar wavelets: \(\Theta(M; \theta) = c_\theta M \).
2. Fourier samples, (piecewise) polynomials: \(\Theta(M; \theta) = c_\theta M^2 \).
Introduction

Generalized sampling

Reconstructions from Fourier samples

Generalized sampling for nonuniform samples

Generalized sampling and infinite-dimensional compressed sensing
Problem formulation

We seek to reconstruct f in terms of piecewise orthogonal polynomials on $[-1, 1]$.

Note: in practice one needs to locate x_1, \ldots, x_l to high accuracy.

- Known as **edge detection**, e.g. concentration kernel methods (Gelb, Tadmor, Tanner,...).
- Edge detection is an important **source of errors**. Any method must be **robust** w.r.t. such errors.
Problem formulation

We seek to reconstruct f in terms of piecewise orthogonal polynomials on $[-1, 1]$.

Note: in practice one needs to locate x_1, \ldots, x_l to high accuracy.

- Known as edge detection, e.g. concentration kernel methods (Gelb, Tadmor, Tanner, ...).
- Edge detection is an important source of errors. Any method must be robust w.r.t. such errors.
Numerical example I

Left: $f(x) = \mathbb{I}_{[-\frac{1}{2}, \frac{1}{2}]}(x) \sin(\cos x)$. Right: Fourier series (black), generalized sampling with $N = 25$, $M_0 = M_2 = \frac{1}{2} M_1 = 5$ (blue) and $N = 50$, $M_0 = M_2 = \frac{1}{2} M_1 = 7$ (red).

The quantity $C_{N,M}$ against N, where $M_0 = M_2 = \frac{1}{2} M_1 = \lceil \sqrt{N} \rceil$.
Numerical example II

Left: \(f(x) \). Right: Fourier series (black), generalized sampling with \(N = 100 \), \(M_0 = \ldots = M_4 = 13 \) (blue) and \(N = 200 \), \(M_0 = \ldots = M_4 = 18 \) (red).

The quantity \(C_{N,M} \) against \(N \), where \(M_0 = \ldots = M_4 = \lceil \sqrt{\frac{3}{2} N} \rceil \).
Robustness I: noise

$M_0 = M_2 = \frac{1}{2} M_1 = \lceil \sqrt{N} \rceil$

$M_0 = \ldots = M_4 = \lceil \sqrt{\frac{3}{2} N} \rceil$

Top row: $f(x)$. Bottom row: the error $\|f - f_{N,M}\|$ against N with noise at amplitudes $\epsilon = 0, 10^{-12}, 10^{-8}, 10^{-4}$.
Robustness II: edge detection errors

Top row: $f(x)$. Bottom row: the error $\|f - f_{N,M}\|$ against N with edge detection errors of magnitude $\epsilon = 0, 10^{-12}, 10^{-8}, 10^{-4}$.

$M_0 = M_2 = \frac{1}{2} M_1 = \lceil \sqrt{N} \rceil$

$M_0 = \ldots = M_4 = \lceil \sqrt{\frac{3}{2} N} \rceil$

▶ It can be shown that there is at worst linear drift in $M = \sqrt{N}$.

30 / 47
Robustness III: jitter

$M_0 = M_2 = \frac{1}{2} M_1 = \lceil \sqrt{N} \rceil$

Top row: $f(x)$.
Bottom row: the error $\|f - f_{N,M}\|$ against N with jitter errors of magnitude $\epsilon = 0, 10^{-12}, 10^{-8}, 10^{-4}$.

- It can be shown that the best achievable accuracy scales like $\mathcal{O}(\epsilon)$.

$M_0 = \ldots = M_4 = \lceil \sqrt{\frac{3}{2} N} \rceil$
Introduction

Generalized sampling

Reconstructions from Fourier samples

Generalized sampling for nonuniform samples

Generalized sampling and infinite-dimensional compressed sensing
Motivation

In MRI one takes measurements

$$\{\mathcal{F} f(\omega_n)\}_{n=1}^N.$$

What types of sampling schemes $$\{\omega_n\}_{n=1}^N$$ are used in practice?

Equispaced:

1D

2D
Motivation

Jittered:

Logarithmic:
Motivation

We need robust reconstruction algorithms that can handle (potentially highly) nonuniform sampling strategies.

Problem: the sampling system

\[\psi_n(x) = e^{2i\pi \omega_n \cdot x}, \quad n = 1, \ldots, N, \]

will not be orthonormal typically unless \(\{\omega_n\} \) are equispaced.
A system \(\{ \psi_n \}_{n \in \mathbb{N}} \) is a frame for a Hilbert space \(H \) if

- \(\{ \psi_n \}_{n \in \mathbb{N}} \) is dense in \(H \),
- there exist \(c_1, c_2 > 0 \) such that

\[
 c_1 \| g \|^2 \leq \sum_{n=1}^{\infty} |\langle g, \psi_n \rangle|^2 \leq c_2 \| g \|^2, \quad \forall g \in H.
\]

Note: the \textbf{frame operator} \(\mathcal{P} : H \to H, \mathcal{P}g = \sum_{n=1}^{\infty} \langle g, \psi_n \rangle \psi_n, \) is well-defined, bounded, self-adjoint, and we have

\[
 c_1 \| g \|^2 \leq \langle \mathcal{P}g, g \rangle \leq c_2 \| g \|^2.
\]
Generalized sampling with frames

Let

\[\mathcal{P}_N g = \sum_{n=1}^{N} \langle g, \psi_n \rangle \psi_n, \]

and define

\[\langle \mathcal{P}_N f, \phi_m \rangle = \langle \mathcal{P}_N f, \phi_m \rangle, \quad m = 1, \ldots, M. \]

Note:

- \(\mathcal{P}_N \to \mathcal{P} \) strongly on \(\mathbb{H} \).
- \(\langle \mathcal{P} \cdot, \cdot \rangle \) is an equivalent inner product on \(\mathbb{H} \).

Hence, generalized sampling works equally well for frames as it does for orthonormal bases.

- In particular, whenever \(\{\omega_n\} \) give rise to a Fourier frame then we may use generalized sampling.
The non-frame case

Jittered sampling often gives rise to a Fourier frame. However, log-sampling need not.

\[\{ \omega_n \}_{n=1}^{N} \] may also depend on \(N \), i.e. \(\{ \omega_{n,N} \}_{n=1}^{N} \).

- In general, \(\{ \omega_n \}_{n=1}^{N} \) may also depend on \(N \), i.e. \(\{ \omega_{n,N} \}_{n=1}^{N} \).
Generalized sampling for (highly) nonuniform samples

Define the operator

\[P_N g(x) = \sum_{n=1}^{N} \mu_{n,N} \mathcal{F} g(\omega_{n,N}) e^{2i\pi \omega_{n,N} x}. \]

- \(\mu_{n,N} = (\omega_{n+1,N} - \omega_{n,N}) \) is a density compensation factor.
- Local clustering of \(\{\omega_{n,N}\} \) is compensated by \(\mu_{n,N} \).

Work in progress: what conditions on \(\{\omega_{n,N}\}_{n=1}^{N} \) ensure that generalized sampling works for this (or a similar) choice of operator?

- Partial result: if \(\delta^N := \max |\omega_{n+1,N} - \omega_{n,N}| \leq \delta < 1, \forall N \in \mathbb{N} \), then generalized sampling works with \(P_N \) as above.
Numerical example I

Generalized sampling with $N = 20$, $M_0 = M_2 = \frac{1}{2} M_1 = 5$ (black), $N = 40$, $M_0 = M_2 = \frac{1}{2} M_1 = 4$ (blue) and $N = 80$, $M_0 = M_2 = \frac{1}{2} M_1 = 7$ (red).

The quantity $C_{N,M}$ against N, where $M_0 = M_2 = \frac{1}{2} M_1 = \lceil \frac{1}{2} \sqrt{N} \rceil$.
Numerical example II

Generalized sampling with $N = 100$, $M_0 = \ldots = M_4 = 9$ (black), $N = 200$, $M_0 = \ldots = M_4 = 13$ (blue) and $N = 400$, $M_0 = \ldots = M_4 = 18$ (red).

The quantity $C_{N,M}$ against N, where $M_0 = \ldots = M_4 = \lceil \sqrt{\frac{3}{4}N} \rceil$.
Robustness

Noise

Jitter

Edge detection
Introduction

Generalized sampling

Reconstructions from Fourier samples

Generalized sampling for nonuniform samples

Generalized sampling and infinite-dimensional compressed sensing
Infinite-dimensional compressed sensing

Suppose f is actually sparse in $\{\phi_n\}$, i.e.

$$|\{n : \alpha_n \neq 0\}| = k \ll \infty.$$

Question: can we recover f exactly using $O(k)$ measurements?

Answer: yes! By combining generalized sampling ideas with existing tools from finite-dimensional compressed sensing.

- Leads to an important generalization of compressed sensing to infinite-dimensional signal models.
Suppose f is actually sparse in $\{\phi_n\}$, i.e.

$$|\{n : \alpha_n \neq 0\}| = k \ll \infty.$$

Question: can we recover f exactly using $O(k)$ measurements?

Answer: yes! By combining generalized sampling ideas with existing tools from finite-dimensional compressed sensing.

- Leads to an important generalization of compressed sensing to infinite-dimensional signal models.
Theorem (BA,Hansen)

Given

\[f = \sum_{n=1}^{\infty} \alpha_n \phi_n, \quad \Delta = \{ m : \alpha_n \neq 0 \}, \]

suppose that \(\Delta \subset \{1, \ldots, M\} \) for some \(M \in \mathbb{N} \). Let \(\epsilon > 0 \) be arbitrary. Then, there exists an integer \(N \in \mathbb{N} \) depending on \(M \) and \(|\Delta| \) only such that the following holds: if \(\Omega \subset \{1, \ldots, N\} \), \(|\Omega| = K \), is chosen uniformly at random, then, with probability greater than \(1 - \epsilon \), \(f \) can be recovered exactly from the samples \(\{\hat{f}_m : m \in \Omega\} \) given that \(K \) is proportional to

\[|\Delta| \cdot \log(\epsilon^{-1} + 1) \cdot \log(NM\sqrt{|\Delta|}). \]
Numerical example

Let $|\{n : \alpha_n \neq 0\}| = 25$, $\{\phi_n\}$ be Haar wavelets and set

$$f(x) = \sum_{n=1}^{200} \alpha_n \phi_n(x) + \chi_{[\frac{1}{2}, \frac{9}{16}]}(x) \cos 2\pi x, \quad x \in [0, 1].$$

<table>
<thead>
<tr>
<th>M</th>
<th>(a)</th>
<th>(b)</th>
<th>(c) (avg. 20 trials)</th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>1.43e0</td>
<td>4.74e-5</td>
<td>4.73e-5 ($m = 230$)</td>
</tr>
<tr>
<td>1201</td>
<td>8.5e-1</td>
<td>2.36e-5</td>
<td>2.38e-5 ($m = 460$)</td>
</tr>
</tbody>
</table>

Error for (a) the partial Fourier series, (b) generalized sampling and (c) generalized sampling with compressed sensing.
Generalized sampling

Generalized sampling with compressed sensing